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SUMMARY

The second-degree nonlinear aeroelastlc equations for a flexible, twisted
!

nonuniform rotor blade which is undergoing combined flapwlse bending, chord-

wise bending, torsion, and extension in forward flight are developed using

Hamilton's principle. The derivation of the equations has its basis in the

• geometric nonlinear theory of elasticity and the resulting equations are

. consistent with the small deformation approximation in ,,hich the elongations

and shears are negligible compared to unity and the square cf the derivative
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of the extensional deformation of the elastic axis is neglig_h!e compared to

the squares of the bending slopes. The implications of the slender beam

approximation as applied to the derivation of the second-degree nonlinear

_ equations of motion are discussed and a mathematical ordering scheme which is 1
I

compatible with the assumption of a slender beam is intoduced. No assumption i

is made regarding the coincidence of the elastic, mass, and tension axes of i

the blade, although the elastic and aerodynamic center axes are assumed i

i

|

coincident at the blade quarter chord. The blade aerodynamic loading is !
I

obtained from strip theory based on a quasi-steady approximation of two-

dimensional, incompressible unsteady airfoil theory. The resulting equations

are compared with several of those existing in the literature. These

• comparisons indicate several discrepancies with the present equations,

particularly in the nonlinear terms. The reasons for these discrepancies

are explained.

INTRODUCTION

Flap-lag-torsion aeroelastic stability of flexible helicopter rotor

blades has been receiving considerable attention in the literature during the

last decade. This problem involves both linear "d nonlinear coupling _mong

the various degrees of freedom. Current emphasis in the literature (see, for

example, references 1 to i0) is being directed at the nonlinear aspects of

the problem as arising from the nonlinear theory of elasticity, either

directly or indirectly. In general, the nonlinearity of the equations of the

theory of elasticity .an have both geometrical and physical origin (references

ii and 12). Geometric nonlinearity is associated with the neress[ty to
R

consider the deformed configuration in writing the equilibrium equations and
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the need to include nonlinear terms in the strain-displacement relations.

Physical nonlinearity is associated with the necessity to consider the
t

relations between the components of stress and strain as nonlinear. In the

present development only geometrical nonlinearity is considered. The equations

are derived using the level of approximation identified as small deformations

I in reference 13. This level of approximation assumes that the elongations

and shears are negligible compared to unity and that the square of the

derivative of the extensional deformation on the elastic axis is negligible

compared to the squares of the bending slopes. The equations of motion

consistent with this level of approximation may be derived to any desired

degree by retaining the dependent variables to the appropriate degree

throughout the development. The present development will be directed to the

derivation of the second-degree nonlinear equations of motion in which one

formally retains terms through second degree in the dependent variables.

Rigorous adherence to this retention scheme leads to an almost insurmountable

amount of algebra. To circumvent this problem to some extent, usual practice

in the literature dealing with flexible rotor blades is to introduce an

ordering scheme early in the development of the equations. Following this

practice, an ordering scheme which is consistent with the assumption of a

slender beaz is imposed early in the development of the dynamic and elastict

portions of the present equations. The ordering scheme imposed has both a

mathematical and physical basis and is discussed in Appendix A. No ordering

' , scheme is imposed in the development of the generalized aerodynamic forces

herein because any ordering scheme which is imposed would depend on the

order assigned to the advance ratio, inflow ratio, and collective and cyclic

pitch, which in turn depend on the flight condition being addressed. To

3

t
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accommodate any flight regime of interest with th_ present equations, the

aerodynamic forces are left in general second-degree form from which one can

obtain the aerodynamic forces to tl _ order appropriate to any case of interest.

The generalized aerodynamic forces are obtained from strip theory based

on a quasi-steady approximation of two-dimensional, incompressible, unsteady
J

airfoil theory. The effects of reverse flow and stall are not considered.

Consideration of forward flight leads to aerodynamic forces which are periodic.

The solution of the resulting equations requires special procedures such as

Floqv_:t-Liapunov theory or time history solutions by direct numerical

integration. However, in the special case of hover for a rotor having three

or more blades, the resulting equations have constant coefficients and can be

solved using standard eigenvalue techniques.

It was shown in reference 14 that the existence of some linear aerodynamic

I coupling terms associated with blade steady-state flapping and lagging in the

perturbation equations for a rigid articulated blade was dependent on the

order in which the flap and lag rotational transformations were imposed while

developing the nonlinear equations of motion. The need for addressing the order

in which the component rotations are imposed when developing nonlinear equations

of motion is a consequence of the fact that the angles of rotation associated

with the flapping and lagging motions must be treated as finite. In this case,

the matrices associated with the individual rotations are not commutative. A

preliminary study of the role of the assumed transformation sequence in the

development of the nonlinear flap-lag equations for a flexible blade was also

given in reference 14. The need for addressing the order in which the component

rotations are imposed also arises _,hile developing the nonlinear equations for

an elastic blade. In this case, the angles of rotation associated _¢ith the

j
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deformations must be treated as finite and the matrices associated with the

i

individual rotations are not commutative. On the h:,_|sof those pre]Iminary

considerations, it was shown that aerodynamic coupling terr_ similar to those

found for a rigid blade will also appear in the equations for a flexible

blade. In addition to differemces in the aerodynamic terms, reference 14
Z"

also showed that the nonlinear curvature expressions which are needed in

derivlng the strain expressions are also dependent on the order in which the

rotational transformations are imposed. Reference 13 was directed at more

completely examining the effect of the rotational transformation sequence on

the nonlinear curvatures. As an extension of the work in reference 13, this

report presents an extensive development of the nonlinear aeroelastic equations

in the presence of coupled flapwise bending, edgewise bending, torsion, and

extension, and then examines Lhe effect of the assumed rotational trans- ,

formation sequence on the form of the equations. Out of the six possible

rotational transformation sequences which may be imposed, only two will be

addressed here: flap-lag-pitch and lag-flap-pitch.

, The present equations will be compared to several sets of corresponding

equations existing in the literature. Several discrepancies with the present

results will be identified, particularly in the nonlinear terms, the reasons

for these discrepancies will be explained. Furthermore, it will be shown

i
that the particular small deformation approximation considered in the present

report is necessary to insure the retention of all the linear and second-degree

nonlinear terms in the second-degree nonlinear equations of motion.
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SYMBOLS

a airfoil lift-curve-slope

A cross-sectional area of blade

Au,Av,A generalized aeredynamlc forces per unit length in X,Y,Z J

directions, respectively

A_ generalized aerodynamic moment per unit length about

elastic axis

b number of blades

Bv,BT,B6w D boundary terms arising from strain energy, kinetic energy,
and material damping, respectively

BI,B 2 section constants

c blade chord

Cd airfoil profile drag coefficient
o

C(k) Theodorsen's circulation function

J T/p_2R 4_ CT rotor thrust coefficient,

!

CI,C 2 section constants

di (i = 1,2...6) notation used in writing the virtual work associated with

ii material damping in concise form

DI,D 2 sectiou constants

D airfoil profile drag per unit length

1978007059-007



e chordwi,_e offset of mass centroid from elastic axis

(positive when in front of elastlc axis)
{

eA chordwise distance of area centroid of cross section from
elastic axis (positive when in front of elastic axis)

J

E Young's modulus

E coefficient of internal friction in tension

-ex3,ey3,ez3-- unit vectors along x3,Y3,Z 3 axes !i

ex,ey,eZ unit vectors along XYZ axes

Fx3,Fy3,F z components of aerodynamic force per unit length in x3,Y3,Z3
3 directions

I

G shear modulus

G coefficient of internal friction xn shear

vertical velocity of two-dimensional section normal to

free-stream

Iu'Iv'Iw generalized inertia forces per unit length in X,Y,Z directions

f

I_ generalized inertia moment per unit length about elastic axis

I,I_ area moments of inertia about q and _ axes, respectively i

• I

J torsional section constant
,s

k reduced frequency ORIGINALPAGEIS
oP POORaLrl

7

I,
I
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+

kA polar radius of gyration of cross-sectional area about
elastic axis

ki (i = 1,2...6) notation used in writing the variation of the kinetic

energy in concise form

I

k polar radius of gyra=ion of cross-sectional mass aboutm

2 2)
elastic axis (km2 = kml + km2

kml,km2 mass radii of gyration about n and _ axes, respectively

L aerodynamic llft per unit length

M,M_,Mx3 aerodyt,amic pitching moment per unit length about the
deformed elastic axis

m mass of blade per unit length *

QDu,QDv,QDw,QD_ genecalized damping forces

R length of blade

rl position vector of point after deformation

position vector of point before deformationo

t si (i = 1,2...9) notation used in writing the variation of the strain

energy in concise form

Su,Sv,Sw,S _ generalized elastic forces
w

T kinetic energy; also blade tension; also rotor thrust

UR,UT,U P , radial, tangential, and perpendicular components of
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, velocity for blade airfoil section

L resultant of UT and Up

U_ radial foreshortening of elastic axis due to bending

u,v,w deformations of elastic axis in X,Y, and Z directions,

respectively

V strain energy; also forward flight velocity

VXyZ relative velocity of point on elastic axis expressed in XYZ

coordinate system

relative velocity of point on elastic axis expressed in
x3Y3Z 3

x3Y3Z 3 coordinate system

i

_a wind velocity vector

vi induced downwash velocity at rotor, positive downward

W work done by nonconservative forces

WA work done by aerody_Lamic loading

WD work done by structural damping

XYE coordinate system with origin at hub centerllne which

rotates w_th blade such that X-axls lles along the initial

or undeformaed position of the elastic axis

XIYIZ I inertial axis system with origin at hub centerline and ZI

normal to hub plane

9
ORIGINALPAGE IS
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X_Y_Z_ hub-flxed axis system rotating about the ZI axis with

an_t,lar velocity
t

xy_ blade-fixed axis system, after deformation, which

translates with respect to XoYoZ °

blade-flxed axis system at arbitrary F.....on elastic
XoYoZo

axis before deformation

XlYlZl coordinates of point (which was at XoYoZ ° in the unde-

formed blade) in the deformed blade

x375z3 blade-fixed orthogonal axis system in deformed

configuration obtained by rotating xyz; x3-axis is

tangent to the deformed elastic axis

[T] transformation matrix relating the angular orientation
of the deformed and undeformed blade

f

[eij] Green's strain tensor

airfoil section angle of attack, :_= tan-iUp/UT

shaft angles

J
I _ angle of built-ln coning (precone angle)

pc

I _,_,0 Eulerian-type rotation angles between xyz and x3Y3Z 3

Yxx,Y_g,yx_ engineerln¢ strain components

( ) variation of ( )

C small parameter of the order of the bending slope._: also

10

|
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airfc_l section pitch angle with faspect to free-stre_

velocity !

I,
EXX*EXrl9_X_ tensor strain components I_

h

q sectional coordinate along major prilci_l axis for _ ;
I-

- givenpotn,_ontheelastic_is I:
F

i,

sectional coordinate normal to q aIlls at elastic axis

A

_+_'n "

0 collective pitchc

@Ic,@is cyclic pitch components

9kc pitch angle due to kinematic coupling

@pC built-ln twist (pret_tst), positive when leading edge

is upward

(n,_) warping function

_q,l_ derivatives of ).with respect to n and _, respectively :

inflow ratio, \__R= Vsinas - vi, positive upward

advance ratio, _R = Vcosa
S

P mass density of blade; also mass density of air

e total geometric pitch angle

"
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c_Tnc_C ,CX_

Txx'_xq '_a_ engineering stresses

_ngle of twieting deCgrmatlo_ about elastic axis, positive

when leading edge is upward

blade azimuth angle measured from downwind position in
J

direction of rotation

tozslonal curvature
x3

angular velocity of XYZ coordinate system

rotational speed of rotor

t )C circulatory aezodynamlc term

( )NC noncirculatory aerodynamic term

[ IT denotes transpose of mat:ix

( ) time derivative
9t

!

( ) space derivative 3x

MATHEMATICAL _._3DELAND COORDINATE SYSTEMS

' The mathematical model chosen to represent the corer blade in t_e

present development consists of a stralght, slender, varlablv t_Isted,

nonuniform beam which can undergo combined flapwise bending, chordwtse

bending, torsion, and extension. The elastic axis, the _s_ axis, 4nd the

tension axis (area-centrold axis) are taken to be noncelneident; tht. ,'lasttc

axis and the feathering axiv are assumed coincident with th_ quarter--chord

12
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of the blade. The elastic axis is incllned to the plane of rotation at a

small angle in order to accommodate any built-ln coning (precone). The model

is valid for blade-root conditions at the shaft centerline whlch represent

either clamped (hingeless) or pinned (articulated) conf_guratlons. In the

latter case, the precone angle would be set t_ zero, Based on a quasi-steady
d

approximation of two-dlmenslonal, unsteady airfoil theory, a distributed

aerodynamic loading in the flapwise and lagwlse directions and a distributed

aerodynamic torque about the elastic axis is assumed to be acting on the blade.

Several orthogonal coordinate systems will be employed in the derivation

of the equations of motion; those which are common to both the dynamic and

aerodynamic aspects of the derivation are shown in figures i to 4. The axi_

systems associated with the blade in its undeformed configuration are given

in figures i and 2. The axis system XIYIZ I (figure I) is fixed in an inertial

frame with origin at the centerllne of the hub, and the ZI axis is normal to

the plane of the hub. The axis system _Y_Z_ is obtained by rotating about

the positive ZI axis by the angle _ = at , where _ is the constant angular

velocity of the rotor blade. The third axis system shown in figure i, XYZ,

is obtained by rotating X_Y_Z_ about the negative Y_ axis by an amount 8pc ,

the angle of built-ln coning. All deformations of the blade are referenced

to the XYZ system. The X axis is taken to be aligned along the elastic axis

of the undeformed blade. As mentioned above, it is assumed that the elastic

I axis, the feathering axis, and the quarter-chord of the blade are coincident.
The geometry of a cross section of the blade at an arbitrary spanwise station

i along the X axis before deformation is shown in figure 2. The point of the

! cross section through which the elastic axis passes Is given by the inter-

section of the Y and Z axes. The q and _ axes with origin at the

13
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elastic axis are principal axes of the cross section and are inclined to the

Y and Z axes by an amount equal to the total geometric pitch angle, 0.

The geometric pitch angle is given by

@ = @pt + @kc + 8c - @Ic c°s_ - 81s sln_ (i)

J

where 8pt is the built-in twist angle (pretwlst), 8kc is the pitch angle

due to kinematic coupling, @c is the collective pitch angle, and @ic and

@is are the first harmonic cyclic pitch components. The pretwlst (Spt) is a

function of the running coordinate x while the collective and cyclic pitch

components cf the control input (@c' @ic' @is ) are independent of both x

and t. The pitch angle due to kinematic coupling (@kc) is to be included in

equation i only if the elastic blade has hinges at the root. In this case,

{,, @kc is dependent on the rigid-body flapping and lagging motions. The cross
' section is assumed to be symmetric with respect to the q axis. During

deformation, the q and _ axes are assumed to move with the cross section.
J

The generalized coordinates defining the configuration of the deformed

blade are shown in figures 3 and 4. The s tuation depicted in figure 3 is

! appropriate to a rotational transformation _equence which is flap, followed

i by lag, followed by pitch (flap-lag-pitch sequence) while that shown in figure

i 4 is appropriate to a rotational transformation sequence which is lag,

/ followed by flap, followed by pitch (lag-flap-pitch sequence). _en the blade

deforms, the elastic axis at an arbitrary section deforms an amount u in the

X direction, v in the Y direction, and w in the Z direction and the

section rotates about the principal axes due to bending in addition to twisting

an amount _ about the elastic axis. Let XoYoZ ° be axes fixed to the

blade at an arbitrary point on the elastic axis of the blade so that before

4 '°%
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deformation XoYoZ° are parallel to XYZ, respectively. The deformations u,

v, w, and ¢ both displace XoYoZ ° to xyz and rotate xyz to x3Y3Z 3

where the x3 axis is tangent to the deformed elastic axis. The rotation

of the triad xyz to its final position denoted by x3Y3Z 3 may be effected

in several ways depending on the sequence in which the analyst chooses to

impose the individual rotations. Two rotational transformation sequences

are considered here. Detailed considerations related to these transformations

are contained in reference 13.

Some comments regarding the geometric pitch angle are in order. The

built-in twist as well as the control inputs and kinematic coupling are present

in the blade even before deformation, as shown in figure 2. Then, when

imposing a rotational sequence between the xyz and x3Y3Z 3 axis systems, the

rotation 9 should be imposed first. However, common practice in the rotor
i
, blade literature is to combine pretwlst with elastic torsion. For mathematical

convenience herein, the control inputs and kinematic coupling will be included

with elastic torsion in the same manner as the pretwist.

HAMILTON'S PRINCIPLE

The equations of motion are derived using the extended Hamilton's

principle (reference 15) in the form

t0_tl(6T - 6V + 6W)dt = 0 (2)

where

_w- _wD + _wA (3)

ORIGINALPAGE I_
15 OFPOO& AI
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In equation 2, T is the kinetic energy, V is the strain energy, and W is

the work done by all the nonconservative forces. For subsequent convenience,

the nonconservative work is divided into two parts as indicated in equation

3: the first part, _WD, due to structural damping and the second part, 6WA,

due to the aerodynamic loading. In the following sections explicit expressions J

for _T, 6V, and 6W in terms of the dependent variables u, v, w, and # and

the blade sectional properties will be developed for two of the six possible

rotational transformation sequences which may be imposed in arriving at a

relationship between the blade-fixed coordinates of the deformed and un-

deformed blade. In this development, the geometric nonlinear theory of

elasticity, in particular the level of approximation in this theory designated

as small deformations I in reference 13, will be employed.

STRAIN ENERGY

The expression for the strain energy of the blade in terms of stresses

and engineering strains is

R

V = _fOffA (OxxYxx + _XqYxq + Cx_Vx_)dn d_ dx (4)

where, using Hooke's law,

n

_xx E Yxx

_XD = G Yx_

_x_ = S Yx_ (5) .

I Assuming small strains, the engineering strains are related to the components

of the strain tensor according to

16
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m

Yxx £xx

7x_ = 2CxQ
i

Yx_ = 2ex_ (6) i

i

Several different definitions of strain may be found in the literature (see,

for example, reference 16). Adopting a Lagrangian description for the strain

(as customary in solid mechanics) wherein measurements are with respect to

the initial or undeformed configuration, the appropriate strain tensor is

Green's strain tensor [Eij] the components of which (reference ii) can be

written in the form

d_l • d_l- d_o " d_o = 2bdx dq d_[eij]li _ (7)

The quantities d_° and d_1 in equation 7 are differentials of the position

vectors to an arbitrary polnt in the blade cross section in the undeformed

and deformed conflgurationss respectlvely. The scalar quanuities d_ • d_
O O

and d_1 • d_1 are then the squares of a differential line element before and

after deformations respectively, where dx d_ d_ are increments along the

undeformed elastic axis and two cross-sectional axes, respectively. This

implies that the strain considered is that along a pretwisted fiber.

The position vector of a generic point in the cross section of the
/

undeformed blade is given by

x° - X %'pt
i

' ro = Yo = cos 8 - _ sin e (8)

I sin 8 + _ cos e

whcre the x axis i_ aligned alonE the undeformed elastic axis. The

ORIGINAL PAGE_ 17
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corresponding point in the deformed blade is given by the sum of the

displacement of the elastic axis due to deformatlor and the position of the

point relative to the elastic axis and can be written as

71 " Yl " v + [T]T (9)

w

where UF, the axial displacement associated with the foreshortening of the

elastic axis due to bending, is given by

I0"UF = ½ (v'2 + w'2)dx (i0)

The transformation matrix IT] relates the deformed blade axls system x3Y3Z 3

with the undeformed blade axis system xyz. The warping function _ is a

function of the cross-sectional coordinates q and _ and is obtained by

solving Laplace's equation for the cross section of the blade (reference 17).

The quantity w is the torsional curvature about the deformed elastic
x3

axis which has x3 as its tangent. The quantities UF, [T], and _x3 are

functions of the dependent variables u, v, w, and ¢ which are in turn

functions of x and t. For convenience of notation the functional

dependence of the quantities on x, t, D, or _ will not be indicated.

The elements of the transformation matrix [T] in equation 9 depend on

f

the order in which the sequential rotational transformations from the xyz

system to the x3Y3Z 3 system are imposed by the analyst, as stated earlier.

The particular strains £xx' £xq ' and £x_ and the associated strain

energy will now be developed for each of the two transformation sequences

considered herein.

t8
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_p

Flap-Lag-Pitch Transformation Sequence

For this particular sequence, the rotational transfor_.atlon matrix IT]

which relates x3Y3Z3 to xyz is obtained from reference 13 by replacing

-_ by @ from equation I. To second degree the result is given by
"pt

t r

•" I I -T- ¢)°°'e
[TFLP] = -,,'{._=e ,¢=o.e ) -¢.Ine *{:--_- _}.'_=e (Ii)

--_-- e -

From the same reference, the appropriate expression for the torsional

curvature _ is given by
x3

= e' + _' - v'w" (12)
°Jx3 pt

As already remarked, reference 13 considered pretwist combined with elastic

twist for convenience following earlier practice in the rotor blade litera-

ture. The same expedient is employed in the present work. As a consequence

of employing this simplification, the position vector of a point before

, deformation as obtained from equation 9 by setting u, v, w, and $ to zero

yields the term -18' in the x component (see equation 8). This implies
pt o

/

that axial deformation due to warping exists in the initial configuration

before any deformations are imposed. Such a situation would exist if an

unt_'isted blade is twisted and then "frozen" to arrive at the pretwisted

configuration. It should also be noted that reference 13 did not explicitly I
I

consider foreshortening in the..development given therein. However, even if

foreshortening is considered explicitly the rotational transformation matrix i

tl

z9 ORIGINAt,FAQ

)

i
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[T] remains unchanged for the level of approximation considered in this

report.

Substituting equations ii and 12 into equation 9, the components of the

final position vector to second degree are given by

xI = x+ u- UF- _ - (v'+w'¢)(q cos e - C sin e)
x3

- (w' - v'¢)(nsln e + _ cos e)

v,2
Yl = v - %_x3v' + (i 2 2 )(_ cos @ - _ sin 8)

- _b(n sin e + _;cos e)

W,2 ¢2

zI = w - %_X3w' + (! 2 2 )(_ sin e + _ cos o)

+ (¢- v'w')(ncos e - _ sin e) (13)

From equations 8 and 13 the differentials of the position vectors before and

, after deformation, to second degree, are given by

dx° = dx (I - %8"t)p - I e' dn - %_e' d_pt _ pt

q

- e' dx + cos 8 d_ - sin 8 d_
dYo -Zo pt

20

" I
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dz = Yo e' dx + sin e dq + cos e d_ (14)o pt

and

l ' - (v" + w"_ + w'_t)(q cos e - _ sin 9)dxI = + u' - UF - I_3
l

!

- (w" - _"_ - v'_') _ sin e + _ cos e)

(w' - V'qb)(q cos e - _ sin e)e_Idx

E_q_Ox3 e_
iI + - (V' + w'$) COS 8- (W' -v'$) sin dq

!I '

r

dyI I L v| -- _ ((_X3 v|| + V|_ |X3) -- (V||V | "_ _|_) (_ COS _} -- _ Sin _)

- (I v'22 -_'2)(nsine + _ cose)el_t
!

- ¢'(nsin 9 + _ cose) - ce_t (ncose - _ sine)_dx

+ 1 2 2

- I 2 2 '

ORrGn_AL_G_ _ _

o_ PoorQU_tUn,
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dzI
=lw,L- _(_xW"+3w,_,) - Cw,w,,+ _')(nsinO + _ cosO)x3

t

w,2 _2 )(n cos e - _ sin e)e;t+ (I 2 2

+ (_'- v'%'- v'w")(ncos8 - _ sine)

- (_ - v'w')(n s±. e + _ cos e)e;tjdx

+ 1 2 2 n x3

+ i 2 2

Substituting equations 14 and 15 into equation 7, performing the indicated

operations, and collecting terms, the second-degree expressions for the three

strain components of interest become

7X x n _XX u U ! - _1! + (n 2 + _2)(_, @, + ._ )pt 2

- (v" + w"_)(n cos 0 - _ sin e)

- (w" - v"_)(n sin % + _ COS e) (15a)

7x q - 2£x_ = -_%' + _v'w" (16b)
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! !

i

i . 2£xC ^ ^

ms m --

_{x_ n_' nv'w" (16c)

1

where
i

A

! J

= _ + _ (17)
q

It should be pointed out that in arriving at the expressions given in equations

16 above several terms have been discarded based either on considerations

related to the small deformations I level of approximation, as discussed in

reference 13, or on considerations related to the approximations which can be

made because of the assumed slende_ess of the blade, as discussed in

( reference 18 and in Appendix A. Retention of higher order terms in the

e_ressions for the strain components is not at all a pr_lem. However,

these higher order terms in the strains lead to higher order terms in the

final equations of motion. The, discarding these higher order terms at the

strains level using the considerations of Appendix A simplifies the subsequent

algebraic manipulations.

Taking the first variation of V as given in equation 4 and using

equation 5, ylelds

.r,rr8v
__ 7xxgYxx dn d_ _x (Y_$7_ + Yx_x_)dn d_ dx (18)_o JJA

where the engineering strains are related to the tensor strain as indicated

in equation 6. Using equations 16 in equation 18, taking the indicated

23
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variations, and integrating over the cross section leads to

_V l_U ' + s26_b"+ s36_b'+ s4_v" + s56w" + s6_¢

+ s76*' + s86w" + s96v'3 dx (19)

where

C.._'+ kA2(_'e' + _,2) _ ,A(V"_+ W") co. e + •A(_v''- w") .In .,e']s I
m EA

pt

= [w" v" )_s2 ECI_" + EC2 cos {9- sin {9- _b(w" sin 6)+ v" cos {9

= (Spt + _b')+ EB1 {9,pt_b2 + 8pt(qb pt + EB2 t"

(_v" - w")sln _.- d_v" cos 9 - _'w" sin {9- 8'pt(V"+ <Me")cos _3

J

s4 - EA eA u'(_ sin 9 - cos 8) - EB2 $'@'pC cos @ EC2 ¢" sin £

+ v" [EIqq (sin2 8 + ¢ sin 2 9) + El_(cos 2 A - _ sin 2 ;)3

)

24
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il !
f
I

s5 - -EAeAu' (¢ cos e + sin 0) + EC2+" cos _ - _:l_2+'0'pt sin

!
1_ + v" Z(F'T'_ - _Inn) sin e eo_ _.+ ¢(E:c_ - El:nn) _os 2 _]

s6 " EAeAU'(V" sln 0 - v" cos 0) + EB2(v" B'pt_' sin 0 = v" 0pt¢'' corn0)

+ v"w" (EI_ - EZq_) cos 2 e + w"2(_L_ - _In, _) aln e cos

+ v"2(v.Znn - r.l_) sla e cos G - £c2¢"(v" coe 0 �u"eln e) -
I

s7 = C,J¢'- v'w"(D1 + D2)C

s8 = - @'v'(D1 + D2)C

s9 - - ¢'."(oI + o2)c (20)

The sectional properties _ppeartn_ _n equattons 20 _e_ deftned as foltows:

1978007059-026



A -'-_I dq d_ AeA --JS qdq dr.

^2
Alia2 (q2 + _2)dq d_ j (_2 + _ )dq d_ :

Since the warping function :,(,q,r,)is typically antisvmraetric in - and

and the cross section is assumed symmetrical about the _: axis, the

following integrals are zero:

- 0 ff.(_P . %2)d_ d_ = 0
i

"ff ff
l'

+ dq d; • 0 'd" dC ,, 0 (22)

It should be observed that DI will be identically zero if ',=,,_r.
e

Although this is not strtct!y true, for thickness/cherd ratios typical of

qeliccpter rotor blades the error in assuming that D1 is zero is small. _-

26
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Thus, in the following it will be assumed that DI = 0. Then the last three i

expressions given in equation 20 simplify to '_

s 7 = GJ_' - v'w"GD 2

s8 = . ¢'v'GD 2

s9 = " ¢'w"GD2 (23) ;

Integrating equation 19 by parts, the resulting expression can be put

into the form •

L R S_¢)
'= + S 6 + S 6 + dx + BV (24)5V "'u6u v v w w

where the generalized elastic forces Su, Sv, Sw, and S@, to second degr=e,

are given by !

%

m

Su - sI

t Sv s_ t. - S9

Sw " s_ + s_

% - s_-s_+s6-s; _2s_
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and the boundary terms Bv by

R R J{ R

BV = Sl6U I + (s9 -s_) 6v I + s44v' I - (s_ + s_) 6w I i
0 0 0 0 i

R R R I

+ (s5 + s8) 6w' I + (s7 + s3 - s_) 6_l + s265' [ (26) I
0 0 0

Lag-Flap-Pitch Transformation Sequence

For this sequence, the matrix which relates the deformed blade

coordinates x3Y3Z 3 to the undeformed blade coordinates xyz is obtained

from reference 13 by replacing 8pt by 8 from equation i and to second

degree is given by

! _--v '=
" 2( " w'2) v' ..,

TLFP (' [:" "'" _1[ ] = -_" u-.e .:co,_ " "'-7"" ::'- "::::-: (27)

-,.,(oo,_ - _,___. (, .... i/=,.

From reference 13, the torsional curvature for this case is given by

/

" 8' + ¢' + v"w' (28) !
x3 pt

, Substituting equations 27 and 28 into equation 9, the components of the

' final position vector to second degree are given by

i
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xI = x + u - UF - l_x3 (v' + w' _)(q cos @ r,sin 0)

- (w' - v' _)(u sin e + _ cos 8)

v'2 "_-)(q cos % - E sin 9)
YZ = v - ),_x3V' + (1 2 2

- (0+ v'w')(nsine + _ cos8)

= w' + (i w'2 i
z_= w - l_x3 2 2 )(q sin @ + _ cos 8)

J,

+ _ (q cos @ - _' sin e) (29)
i

: _q_eposition vector of a point before deformation is again given by equation

8. Taking the differentials of the position vectors before and after

deformation, substituting the results into equation 7, and collecting terms,
IL

the second-degree expressions for the three strain components of interest

become

Yxx = Cxx = u' - _.¢" + (n 2 + r_,2)($'0 'pt +{ $,2)

- (v"+ w" 0)(ncose - _ sine)

- (w"- v" 0)(nsine + _ cose) (30a)ORIGINALPAGE IS
OF POOR QUALITY 29
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A

Yx_ = 2_xq = - _ 0' - _ v"w' (30b)

I

|

yx_ = 2eX_ = n _' + _ v"w' (30c)

AS before, several higher order terms have been discarded in arriving at

equations 30. Note that these expressions differ from those obtained for

the flap-lag-pltch sequence by only a single term in each of the shear

strains. Proceeding as before, the generalized elastic forces Su, Sv, Sw,

and S_ are given by

m !

Su - s1

Sv s4
= " +S

Sw S_ !. - S9

S4_ s" -= 2 s_ + s6 s7 (31)

, and the boundary terms BV by

R F, R R

Bv - Sl_U I - (sl + s_) _v I + (s4 + s8) 6v' I + s5_w' I
0 O O O

R R R

+ (s 9 - s_) _w] + (s 7 - s_ + s 3) _*I + s2s,'l (32) '
o o o

30
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p

!

i

i where sI to s6 have the same definition as given in equations 20 and

_ s 7 to s9 are defined by

s7 = GJ_' + v"w'GD 2

d

d s8 = w,_,GD 2

l

I s 9 = v"*'G'D 2 (33)

KINETIC ENERGY

. The expression for the kinetic energy of the blade in terms of the

velocity of an arbitrary mass point of the blade is given by (reference 15)

½_oRfi drl drl
T = 0 d--t'-' d-_-d_ d_ dx (34)

and its first variation, integrated between to and tI , is given by

0 _ • _d-"_" dn d_ dx (35)
.St JO

0 0

In equation 35, the absolute velocity of the mass point is _ and is
dt

defined by

d_l
d-V" + x 06)

where _ is the angalar velocity of the XYZ coordinate system (figure 1),

31
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and rl is the position vector to the mass point. The angular velocity

is obtained by projecting _ along the X, Y, and Z directions and is given

by

g = _ sin 8pc ex + _ cos Bpc ez (37)

Assuming the precone angle 8pc to be small, the expression for _ can be

approximated by

= _ Bpcgx+ _ _'z (38)

Differentiating 31 with respect to time according to equation 36, the

absolute velocity of the mass poznt can be written as

d_l . _ _
i

! d-_- = (Xl - Yl_)eX + (_ + _Yl - _SpcZl)ey + (Zl + Yl_Spc)ez (39)I

The generalized inertia forces will now de derived for each of the two

transformation sequences which are addressed herein.

Flap-Lag-Pitch Transformation Sequence

Substituting Xl' YI' and zI from equations 13 into 39 and the result

into equation 35, integrating by parts over time where necessary, and then

integrating over the cross section, the variation of T can be put into

the form

.]o_T (kl_U - kl_U F + k2_v' + k3_v - k4_w' - k56w + k6_¢)dx (40)

32
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• where, consistent with the ordering scheme given in Appendix A,

kI= - m(_- _F)+ 2,n[_- e(%+ _)sine- e_6=o_'_]

+ m_ 2(x + u - UF - ev' cos 8 - ew' sin e)

•-_q28po(W+e sine + e# .ose)+me_;'cos%

+ me[(_'- v'_- 2v'_),i.e + (_'_+ w'_)_o,e]

k2 = _q2e_x sin 8 - 2me_ cos 8 - me_2x cos 8

k 3 = mQ2(v + e cos e - e_ sin 8) - m_ + me(_ + 8) sln 8 + 2m_Bpc_

/ k4 = m_2e_x cos 8 + 2.f_ev sln % +_2ex sin 8

i

.... m_28pck5 = m_ +me(_ + 8) cos 8 + 2m_Spcv + x

33
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k 6 = -w'(2m_ev cos e + m_2ex cos 6) - m_2eCv cos e +

2 - k2 sin e cos e- -k 2 ) cos 2 e- _'_2(k2m2r_2¢ (km m1 m1)

+ =e_; cos e + 2m_ev'v sin e + m_2exv ' sin e
d

- _q2ev sin e + me_ sin e + m_2Bpce_X sin e

+ 2m_[e sin e (u - UF) - (k2m2- k2ml)v''sin e cos e

- ,:,'(k22=sin2 e+k2mzoos2e_.,3+_,e_sine

- 2m_SpceW sin 8 - mk2(_ + _) - n_Q28pceX cos em

- _ cos 8 - 2_6pceV cos e (41)

The sectional properties appearing in equations 41 are defined as follows:

m =IrA P dq d_ me =IrA On d_ d_ '

•J mk2Jfm1 mk2=ffOm2
p_2dn d_ n2 dn dE

k 2 = k 2 + k 2 (42)
m mI m2 +

• +

From symmetry of the cross section about the q axis and the antl-symmetry
G

of the warping function, the following integrals have been set to zero:
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!
i

bb_ dr_d_ = 0 r]_ dq d_ -- 0

' ff ffi p_ dq d_ = 0 p_.rl d13 d_ = 0 (43)

r

Since UF is a function of v' and w', the term involving 6UF in equation

40 requires separate treatment. Using equation I0, the second term in

equation 40 can be written in the expanded form

fo +
which can be further rewritten as

R dx = a dxl(w'_w' + v'_v')dx (45)
fo klSUF 'folfx kl

i

3

Defining the tension T as

i;T = kI dx (46)

equation 45 can be written as

foR _R, kl_U F dx T(w'_w' + v'¢v')dx (47)

Integrating equation 40 by parts, the resulting expression can be put into

,i the form
i

! £6T - (lu6U + Iv6V + lw6W + Io6$)dx + BT (48)

35
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where the generalized inertia forces Iu, Iv , Iw, and I# are given by

Iu = kI = -T'

i

= ' + k3 + (Tv')'Iv -k2

- ' - k 5 + (Tw')'Iw k4

I_ = k6 (49)

and the boundary terms BT by

R R

i BT = (k2 - Tv')6v J - (k4 + Tw')6w J (50)
O O

1
J

Lag-Flap-Pitch Transformation Sequence

Proceeding as in the previous section, this time using Xl' YI' and z1

from equations 29, the generalized inertia forces Iu, Iv , Iw, and I_ and

the boundary terms BT for a lag-flap-pitch sequence are identical to ,

those obtained in the previous section for a flap-lag-pitch sequence.

Formally, the generalized inertia forces corresponding to the two trans-

formation sequences addressed are different. However, because of the

. ordering scheme employed (see Appendix A) the differences, which occur in the

higher order terms, disappear.

36
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VIRTUAL WORK DUE TO MATERIAL DAMPING

The virtual work due to the dissipative forces associated with

,J

structural (material) damping can be expressed in the form

4

_WD " k_.l QDk _qk (511 '

where QDk is the generalized damping force associated with the k th

dependent variable and _qk is the variation of the k th dependent variable•

In the present development the generalized damping forces accounting for the

dissipation of energy due to material damping will be taken to be those

consistent with the assumption of a material which exhibits a linear vlsco-

• elastic behavior. This theory (see, for example, references 19 and 20)

assumes Chat the stresses are linear functions of the strains and strain

rates. Such a behavior is analogous to a spring and a dashpot in parallel,

• and a model which exhibits such a behavior is often termed a Kelvin-Voigt

solid in the literature (references 20 and 21). A model of this type was

used in reference 22 for a rotating beam. For the stresses and strains of

interest herein, these constitutive relations have the form

Txx - ETxx + E 7xx
r

e,

TXn " GTXn + C 7x_

'rx_;- Gyx_ + G YxC (52)
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where E and G are Young's modulus and the shear modulus, respectively,

and E and G are coefficients which take into account internal damping
i

of the material in tension and shear, respectively. The first term on the

right hand side of each of equations 52 contributes to the usual elastic

strain energy and have already been treated in an earlier section. Considering

only the dlssip_gIve terms in equations 52, the virtual work of the structural

dissipative forces can be written ss

lo" fo" ff'L6WD " E* 7xx 67xx dn d_ dx - C* A _7xn + 7x¢"_7x_) d_ dg dx

(53)

The result given in equation 53 is general. .owever, becauseof the lack of

knowledge as to the distribution of damping, only the direct damping terms

are generally retained in practice. Thus, off-diagonal terms accounting for

damping coupling between the dependent variables which arise from equation

53 are taken to be zero and only the direct damping terms associated with the

dependent variables are retained. In addition to adopting this expedient in

the present development, it will also be assumed that a first approxt_ation

to the direct damping terms can be obtaincd by retaining only the linear

damping terms in the final equations of motion. Thus, it is sufficient to
t

retain terms up to only first degree in the expressions for the strains. To

first degree the resultlng strain expressions will be the same for both of

the transformation sequences, speciflcally

38
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_a,x " u' - X$°' + (n2 �_2)¢'O'pt .- v" (n cos e - _ sin O)

- w"(q sin e + _;cos e)

Substltutin8 equations 54 into squat/on 53, InteSrsttn$ over the crosm
a L

( section, and r@telnln8 only the linear direct da_ing ter_s leads to I
, <'

' /0 R !_WD - - (d16u'+ d260"+ d3g(_'+ d4_v"+ ds_w"+ d6_')dx fI-
(SS) r_

i,

where I'

%. _'^a, '-
i

d2.I"c&"1 _'

d3 = | |Xep¢
(_GIN_ PAGE18 i
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j 'I

* 2 si.2 _)v"
d4 - E (I_ cos % + lqq

/k _ 2 '

d5 " E (I_, sJ f 8 + lqq cos e)w"

i

III

d6 - C J&' (56)

I_egrating equation 55 by parts, the generalized damping forces QD '
u

QDv' QDw' and QD_ becom_

'- (E*A_')'
QD " dl

U

CE (I_ 2 sin" 0)•- = - cos 8 + IqqQD -d4" *
V

: . co.QD -d; = - sin2 _+ lq_

QI)_" -d2" + d3' + d6' " -(E'C16")" + (E*BIOp't2_')'+ (G'J;')' (57)

and the boundary terms B6Wn become
L#

R R R R
I

B_wD -dx_. I +d4'6v I -d46v' I +dS'_w lO O 0 O

R R R

-d5_w' [ -(d 3 - d2' + d6)_* I " d2'5" [ (58.)0 _) O E

40
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%

GENERALIZED AERODYNAMIC FORCES

The aerodynamic forces will be generated from two-dlmenslonal,

incompressible, quasi-steady, strip theory in which only the velocity

components perpendicular to the spanwlse axis of the deformed blade ( the
J

x3 axis) are assumed to influence the aerodynamic loading. Account is

taken of the pulsating free-streamveloclty V(t) associated with a rotating

blade by employing Greenberg's extension of Theodorsen's unsteady theory

(reference 23) for determining the aerodynamic llft and pitching momunt

acting on the blade. The resulting expressions are speclallzed to the case

of quasl-steady flow by setting Theodorsen's circulation function to unity.

Classical blade element momentlun theory is used to calculate the steady flow

induced by the rotor.

In the present application of Greenberg's theoryD the airfoil is taken

to be pivoted in pitch about the aerodynamic center at the quarter chord

and to be executing harmonic motions in pitch (e(t)) and plunge (h(t)) while

immersed in a pulsating alrstream V(t), as shown in figure 5. The llft

and moment acting on an elemental section of the blade may be expressed in

terms of the circulatory and nonclrculatory components as

L = Lc + LNC

Assuming that the blade elastic axis is coincident with the aerodynamic

center at the quarter chord, the individual components of equation 59 follow !

4l OBIGINALPAGE I8 _i
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from reference 23 and can be written as

2

c (h + V_ + V_ + 4 _) (60a) •= T

c

LC " ½0acV(l_ + V£ + _ _) (60b) J

3c

MNC = -_pac(_)2(Vc + h + _-- _) (60c)

Mc-- pac(¼)2 (60d)

In the course of arriving at the circulatory terms in equations 60, the

quasi-steady approximation has been introduced by setting the reduced

frequency k to zero, in consequence of which Theodorsen's circulation

function C(k) assumes the value of unity. The noncirculatory llft and

moment are associated with apparent mass forces and are oftentimes discarded

in rotor blade applications. Note that Greenberg's modification (i.e., a

pulsating stream in wh±ch V @ 0) appears only in the noncirculatory

expressions for the llft and moment. Hence, if one assumes, a priori, that

apparent mass forces will be neglected there is no Greenberg modification.

The lifts and moments given in equations 60 must now be expressed in

terms of UR, UT, and Up, the radial, tangential, and perpendicular velocity
4

compon¢-ts relative to a point on the elastic axis of the airfoil (figure 6).

IA_ the expression in the parentheses of equation 60a for LNC is the

downward acceleration of the mld-chord point of the airfoil, and the

42
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expression in the parentheses of equation 60b for LC is the downward

velocity of the three-quarter-chord point of the airfoil. Since Up is

the relative velocity component perpendicular to the quarter-chord, the

sectional lifts can also be written as

2

c _p c dLNC- %0a (- + (61a)

c

LC = ½pacU(- Up + _ e) (61b)

J

where V(t), appearing outside the parentheses of equation 60b, has been

approximated by the resultant of only the tangential and perpendicular

velocity components and is given by

i

V = U + Up (62)

As indicated in figure 7, the noncirculatory llft acts normal to the section

chordllne* and the circulatory llft acts normal to the resultant velocity U.

The profile drag force acts parallel to U and is given by

Cd U2D = ½0ac o (63)
a

where Cd is the (constant) profile drag coefficient.
o

The components of the aerodynamic forces in the directions of the Y3

and z3 axes are given by

*A portion of LNC acts at the 3/4-chord point and another at the 1/2-

chord point. However, the resultant of the_e two components is shown along'

the z3 axis in figure 7 only for pictorial convenience.
I

43 !
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I

l

,! F --- LC sin _ - D cos _ (64a)

•,i F = LC cos _ + LNC - D sin _ (64b) ;

z3

! ,
I where, from figure 7,

sin u - Up/U_

cos a = UT/U (65)

and U is given by equation 62. he aerodynamic force in the x3 direction

i is given by F and is a profile drag force which is a function of the
x3

{ radial velocity component UR. Following usual practice, this force

component is assumed to have a negligible effect on stability and F is
x3

taken to be zero. Substituting equations 61, 63, and 65 into equations 64 and

assuming that Up/UT and Cd /a are negligible compared to unity leads to
o

c UpC - o UT (66a)
Fy3 " ½0ac - _ T

' Fz3 _ c UT_ c UP c 2 _
= ½0ac - UpUT + _ - _ + (_) (66b)

The noncirculatory and circulatory moments given in equations 60c and 60d can

be written in terms of UT, Up, and E and assume the form

I 44
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- 3c
_C = -½pat (_)2 _ Op UT_ +_-- (67a)

MC-- -_ac (_>22UT_ (67b)

from which the total pitching _oment M_ is given by the sum of equations

i " 67a and 67b as

M,(- M 3) = -%pac (_.)2 T_ - Up +_- (68)

It should be remarked here that for the special cast involving only coupled

flapwise and edgewise bending which is often addressed in the literature, the

quasi-steady approximation to the aerodynamic loading is usually taken to be

( completely determined by the square of the resultant of UT and Up

acting at the quarter chord of the section. It is interesting to note that

the quasi-steady approximation of the lift arrived at by setting C(k) - 1

in the general unsteady aerodynamic expressions of Theodorsen and discarding

all the noncirculatory terms contains an additional term involving E (see

equation 61b) which does not arise when proceeding in the other manner.

The virtual work of the aerodynamlc forces can be written as

fo R
6WA = (Au_U + Av_V + A_w + A_)dx (69)

where the generalized aerodynamic forces Au, Av, A, and A_ are given by
¢
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I

-4 • .i

A 0
U

Av = [T]T Fy

Aw Fz _ (70)

and

A_ = M#(= Mx3) (71)*

where [T] is the rotational transformation matrix which relates the

coordinate axes of the deformed and undeformed blade and F has been set
x3

to zero. The explicit form of the matrix depends on the rotational sequence

employed in arriving at the matrix [T], as already mentioned. In order to

i obtain explicit expressions for the generalized aerodynamic fcrces, the

quantities Fy3, Fz3 , and Mx3 must be known in terms of the dependent

variables u, v, w, and _, and the geometric pitch angle 8. This requires

thaC UT, Up, and c first be obtained in terms of these quantities.

The resultant velocities seen by a point on the elastic axis of the

I blade in the deformed and the undeformed coordinate systems are related

according to

v - [T]Vxyz (72)
x3Y3Z 3

i

i where, from figure 6,

*No transformation is needed for A_ since the rotation _ is about[

the x axls.
3
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= - - - - - (73) '
x3Y3Z3 URex 3 UTey 3 Upez 3

avd VXyZ' the total relative velocity (aerodynamic + dynamic) of a point on

the elastic axis of the blade, is given by J

%zz = a - d-q-J (74)XYZ

The aerodynamic velocity components seen by a blade element are shown in

figure 8. Using figures 1 and 8, the flow relative to the blade due to

forward flight velocity V and induced flow v i can be written as

m •

(Va)xYZ = (M_R cos _ + _R_Bpc)e x - U_R sin _ ey

+ (_R% - g_RBpc cos _)_Z (75)

where the advance ratio U and inflow ratio % are defined by

ttQR= V cos
S

A_R = V sin as- vi (76)

The induced velocity vi is calculated by equating the integrated thrust

to the thrust from momentum theory using the relations

czar

vi = 2V;2 + X2 (77)
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I b _ 2 R '

CT = 2_ 0_2R4 _0 wi Awo d_ (78)

L

where A is the steady-state value of A obtained from equation 70.
Wo w

On the elastic axis

rI = (x + u - UF) ex + v_ + we z (79)
p

and is independent of the transformation sequence. Using equation 79 in

conjunction with equations 36 and 38 the dynamic velocity of a point on the

elastic axis taken with respect to the XYZ axis system is given by

i _-_-JxYz = (u - UF - _V)eX + - flBpcW + _(x + u - UF ey

{ + (w+ _8pcV)ez (80)

Combining equations 75 and 80 according to equation 74 gives the total

velocity seen by a point on the elastic axis as

VXyZ " [_qR cos _ +_RXBpc - u + UF + f_] ex

[_ _RBpc ' _6_cV] -
+ RA- cos_ - w - ez (81)

The quantity c appearing in equations 66 and 68 is the angular
i

velocity of the blade section about the local x3 ax_s and, consistent with i

4s !

'A_ •,
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• the present notation, can be written as _ . It can be regarded as
x3 J

composed of three parts: the first part arising from the rigld-body

angular velocity of the hub in space, the second part arising from the

control inputs and klnem.tic couplings, and the third part arising from the
J

angular velocity associated with the elastic deformations. Since the only

rlgld-body angular velocity of the hub in the present mathematical model is

that due to the blade rotational speed _, the first contribution to
x3

is obtained from

•_x3.• "_Spc1

_3 a " (82)

The contribution of the control inputs and kinematic coupling to the rigid-

body pitching motion of the section is given by

(_x3)cskc = _ (83)

The contribution to E associated wlth the elastic deformation is

x3

obtained by projecting the component angular velocltles _, v', and w' onto

the x3 axis• Formally, all three components can be obtained by replaclng

• the derivatives of the Eu.ler angles 6't _,' and 8' In the initial step of

the derivation of the nonllnear curvature expressions in reference 14 by _,

_, and 8 and then continuing the development. This i._equivalent to

49
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___ i1|1 ........ !

replacing v", w", and _' by v', w' , and _, respectively, in the "

curvature expressions given in reference 14. In the next two sections,

explicit expressions for UT, Up, and _ will be developed.

Flap-Lag-Pitch Transformation Sequence

J

t For this transformation sequence, the tangential and perpendicular

velocity components UT and Up are obtained from equations 72 and 73

using [TFLP] from equation 11 and VXyZ from equation 81 and, to second-

degree in the dependent variables, have the form

UT " [v'(cos e - _ si_.8) + w' (sin 0 + _ cos 8)] [_P_Spc + _R cos _]

I + (v' cos e + w' sin e)(_v- u)
J

[ V'2 _2 ) COS e][_X + tLqRsln _]
- _ sin e - (l 2 2

+ %.] 0 °]_%
." RBpc cos _ - _R i 2 ) sin @ + (_b- v'w') cos

+ [w +_BpcV] [sln 0 + _ cos e] (84a)
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Upm_RCOS_Z_p_tCCOS_sln_Vt(Sln_COSe_

• _| COS e_ V t sln _ (_V I _ • _UF sin _

- + _sin 1 ---_-- sin e + _ cos

Using equa_i_ 82 with [T] = [T_p] from equation ii, the _ectional pitching

velocity due to _ is fo_d to be

J

v ,2 w,2

(_x3)_ - _Bpc(i 2 -2--)+ _' (85) i

The sectional pitching velocity associated with the control inputs and kinematic

coupling is given by •
i

(Cx3)c&kc " _kc + elc_ sin _ - els£ cos _ (86)

Replacing ¢' by _ and w" by w' in equation 12 (while discarding the

' pretwist), the sectional pitching velocity due co the elastic deformntlon is
#

given by
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i

(C)d f = _ -w'v' (87)
x3 e ormatlon

Combining equations 85, 86, and 87, the total sectional pitching velocity is

J

• . v ,2 w*2

E(- _x3)- aBpc(1 2 _-) + _w'+ _ - _'v'

+ekc + elc_ sin ¢- els_ cos ¢ (M)

Equations 84 and 88 in combination with equations 66 and 68 are sufficient to

obtain the generalized aerodynamic forces from equations 70 and 71.

Lag-Flap-Pitch Transformation Sequence

I For this transformation sequence, the tangential and perpendicular

velocity components UT and Up are obtained from equations 72 and 73 using

[TLFP] from equation 27 and VXyZ from equation 81, and, to second degree in

the dependent variables, have the form

UT "_':_R cos @ + _R),_p_ '(COs 0 - _ sin 9) + w' (sin _ + e_,cos 0

2 ) cos + + _u - _pc *

_os 0pt- _ sin 0_ -_QUF cos 0 + _U_P_pcCOS _- _RI_.
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i 2 ) sln e + _ cos + + _Bpc in _ + _ cos

(ma)

i Up "_)I_R c°s _)+ _PABpc_ _v'(cos 8- _ sln 8) - v'.(sln 8+ ¢ cos 8)Ji

¢ + v'w')cos B + (1 2 *

C¢ C°S e + sln 0_+ _12Fsln e + EIJ£P_pcCOS _J- _R_ e

i I --_--- - os e - _ sin

(89b)

l'slngequation 82 wlth IT] = [TLFP] from equation 27 and replacing ¢' by

and v" by v' In equation 28 (while discarding the pretvlst), the resultant

pitching velocity of the section is

• . v,2 w,2

C (- Cx ) - GBpc(I - 7-- --_-)+ _, + _ + v'w'

+ekc + Olct_ sin _ - elsG cos _ (90)

Equ,_.ttons 89 and 90 in combination wlth equations 66 _ud 6| are sufflcl_ to

obtain the geoerallged aerodynamic forces from equations 70 and ?1,.
!
I
I
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SUMMARY OF EQUATIONS

Expressions for 6T, 6V, and _W have been obtaxned above for two

rotational transformation sequences. Substitttting these expressions and

their associat_ boundary terms into equation 2 there results an expression

of the form

Itilo[( )_u + ( )6v + ( )6w + ( )6¢]dx + dt = 0 (91)

For arbitrary, admissible variations _u, 6v, _w, and _$, the four expressions

in parentheses must vanish individually as must the asF_:.bxy of boundary

terms denoted by B. The first condltlo_ will yield the four goverring

nonlinear differential equatlo_= for u, v, w, and _ and the second

condition will give the associated boundary conditions at the ends of the

beam. Since the control inputs are assumed to be known functions of time and

the dynamics of the kinematic control mechanism are not considered, the

equations associated with the control and kinematic motions will not appear.

The governing equations of motion and boundary conditions are summarized

;_ below for each of the two sequences considered.

Flap-Lag-Pitch Trqnsfor_qtion Sequence

Extension:

m(_- uF) - me(_' cos 0 + _' sin O) - 2_['[ - e_ + '_)stn 0 - e,:'_ ¢o_ "]

- _22(x + u - UF - ev' cos _ - ew' sin ,,)+ _2_pc(W + e _In "
+
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9

- [EA[u' + k_'_'A-8' - eA(v" + _") cos 8 + eA(_V"__- w") sin 9]
pt

+ E*Au" }' = A (92a)
U

Chordwise bending:

• o io

" m_; - _e.(_ + 8) sin 8 - 2_SpcW - m_2(v + e cos 8 - e_ sin 8)

+ {me[_2x(_ sin @ - cos 8) - 2_ cos 8] + _'w"GD2}'

+ 2n_(u - UF - ev' cos 8 - ew' sin 0) - (Tv')'

+ {EAeAU'($ sin 8 - cos 8) - EB2_' 8' cos 8ptt

- EC2O" sin e + w"[(EI_ - Einn)(Sin 8 cos O + _ cos 2 8)]

+ v"[Elqq(sin2 8 + $ sin 2 8) + El_(cos 2 8 - $ sin 2 8)]

* 2 sin2 8)v"}" = A (925)
+ E (I_ cos 8 + Inn v

"" Flapwise bending:

m_ + me(_ + 8) cos 8 + 2_qBpcV - (Tw')' 'i

!

- {r,_e[_2x(_cos 8 + sin 8) + 2_ sin 8]}

' + {EC2_" cos 8 - EB2_' C' sin 8 - EAeAU'(_ cos 8 + sin 8)pc
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' 2
+ w''r=_._Inncos A_+ EI_ sin2 0 + _(EI _ - El) sin 2 0]

+ v"[(EI_ - Elnn)(sin 0 cos 0 + _ cos 2 0)] - _'v' GD2

, . ,, m_2_pcX+ E (I_ sin2 0 + Inn cos2 @)w"} = Aw- (92c)

Torsion:

mk-2-(_m+ _) + lI_2*(k2 2in - k2m1) cos 2 @
|

+ me[_2x(w ' cos 0 - v' sin O) - (_ - _2v) sin 0 + _ cos 0]

+ m_2e_(v cos @ - XSpc sin 0)

- 2m_q[esin @ (u- UF) - (k22m k2 )v' sin 8 cos @mI

•

- w' (k2m2sin 2 @ + k2ml cos 0) - e8pc(V cos 0 + w sin 0)]

+ 2m_ev(w' cos @ - v' sin @) - me_(v cos O + {$ sin 0)

[w" v" E*CI$"}"+ {ECI_" + EC2 cos 0 - sin e - _(w" sin @ + v" cos 0) +

, - {EAk2u , , , t2 _' -(@pt + _ ) + EBI0'p + GJ_' v'w"GD 2

_ + EB2[@;t(_v" - w") sir,@ - _'v" cos 0 - ¢'w" sin 0
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- 8' (v" + @w") cos 0] + ' + G J¢'}
I pt

i
,t

+ (EI_ - Elqq)[v"w" cos 2 8 + (w''2- v''2)sin 8 cos 8]

+ EB2¢' e;t(v" sin e - w" cos e) - EC2¢"(v" cos e + w" sin 8) :,

+ EAeAU' (v" sin 8 - w" cos e) =,MS - m_28pceX cos 8 _

2) sin 0 cos O (92d)_ m_2 (kin 2 -
km12

The assembled collection of boundary terms denoted by B is given by

B - BT - Bv + B_WD (93)

and the requirement of the vanishing of the individual variational components

leads to the relations

R

(sl+dll_u J = 0
O

R

(k2 - Tv' - s9 + s4' + d4')_v I = 0
O

' R

(s4 + d4)6v' ] - 0
O

R
!

' (k4 + Tw' - s5' --s8' - d5 )_w I = 0
ORIGINALPAGE IS O !

OF POOR QUALITY j
I R I

f (%+s8+ds)_w'I - 0 F
o

i
, i
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R •

(s7 + s3 - s2' + d3 - d2' + d6)_ I = 0
0

R

(s2 + d2)_' I = 0 (94)
O

from which the boundary conditions can be identified.

The tension T appearing in equations 92 and 94 is given to second

order by

T = m - (_ - UF) + e(v' cos 8 + {$' sin e) + 2a[v - e(; + 0)sin 8]

+ _2(x + u - UF - ev' cos 0 - ew' sin 8)

- _28pc(W + e sin e) __J dx (95)
i

The terms UF and UF in the expression for T given in equation 95 lead

to thlrd-degree nonlinear terms when T is substituted into equations 92 and

94 and can be discarded. Also_ after substituting for T in these equations

only resulting terms which are consistent with the ordering scheme adopted in

Appendix A should be retained. Using the result given in equation 95 in

combination with the extensional equation of motion given illequation 92a

(with damping and set to zero), an alternative definition of T can be

given as

1 T = EA[u' + kA2_b'0' - eA(v" + qbw")cos 9 + eA(_bv" - w")sin 0] (96)pt

As indicated earlier, the generalized aerodynamic forces Au, Av, Aw, and A_
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are obtained from equations 70 and 71 using equations 84 and 88 in combination

with equations 66 and 68 and retaining terms through second degree in the

_ dependent variables. Because of the generality of the present development

these second-degree expressions are extremely lengthy and will not be shown.

For simplicity, comparison of the present aecodynamic results with those

existing in the literature will be done using UT, Up, and _, which are the

primary ingredients of the generalized aerodynamic forces.

Lag-Flap-Pitch Transformation Sequence

Extension:

m(_ - UF) - me(_' cos % + _' sin 0) - 2ntq[v - e(; + e)sin e - e_e cos e]

- m92(x + u - UF - ev' cos 8 - ew' sin 8) + m_26pc(W + e sin 8

e_ cos e) - {EA[u' + kA2_ ' 0' - eA(v" + _w") cos
+ e

pt

+ eA(_v'' - w") sin _] + E*Au'}' = Au (97a)

Chordwise bending:

m_ - me(_ + e) sin % - 2r_B w - m_2(v + e cos e - e_ sin e)
pc

- {me[_2x(cos 8 - ¢ sin 8) + 2f_ cos e]}'

• !

" + 2mfl(u - UF - ev' cos 0 - ew' sin O) - (Tv') i

: OR/GINALPAGleB
oF Qu.4 'r59

1978007059-060



I

i + ..._EAeAU'(_sin e - cos e) - EB2_'_ B' cos e - EC25"_ sin ept

+ v"[EI q(sin 2 @ + _ sin 2 8) + EI_(cos 2 8 - _ sin 2 0)]

+ w"[(El_{ - Elqn)(sln 8 cos 8 + @ cos 2 B)]

* 2 lqqsin2 ": + E (l_cos O + O)v" + _'w' GD2} = A (97b)i v
t

!

Flapwlse bending:
I

J ,

; .;+ _($ + _)cos e + 2_6p (, - (z_')
1
t

I - {me[a2x(sin @ + _ cos O) + 2_v sin 8] - _'v" GD2}' •

t

i + {- EAeAU'(_ cos 9 + sin @) + EC2_" cos @ - EB2_'0;t sin 0

+ v"[(El_ - El q)(sin @ cos @ + ¢ cos 2 0)]

+ w"[Elqncos2 @ + El_sln 2 @ + @(EI_ - Elqq)sln 2 @]

* 2 2 • " n_28pcX+ E (_¢_sinO+ Inncos o)w"} = A - (97¢)

Tors ion:

mf/2¢ (km22 2)mk2(_m+ _) + - kml cos 2 O I

+ me[_2x(w ' cos 0 - v' sin @) - ({}- _2v)sln 0 + w cos O]

6O
I

t
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+ n_2e¢(v cos e - xB sin e)
pc

- w'(km: sin2 8 + kml2 c°s2 8) - eSpc(V' cos 8 + w' sin 8)] ,

i

i + 2n_ev(w' cos e - v' sin e) - me_(_ cos e + w sln e) :
! >

I_ * iI.l!

+ {ECI¢" + EC2[w" cos 8 - v" sin % - _(w" sin 8 + v" cos 8)] + E Ci$ J

, ^,2., + GJ¢' + v"w' GD2- {EAk u'(ept + ¢') + EB1 Upt¢

+ EB2[e;t(¢v" -w") sin @ - ¢'v" cos e - _'w" sin 0

t
1

pt

+ (EI_ - EIqq)[v"w" cos 2 8 + (w''2- v''2)sin e cos e]

+ EB2_' ' " - w"ept(V sin e cos 8) - EC2_"(v" cos e + w" sin 8)

+ EAeAU'(V" sin 8 - w" cos e) - M_ - m_28pceX cos 8

2)sin e cos 8 (97d)- nt'22(k m - kin1

The boundary condltons follow from
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R •

(sl+ dl)_UI = 0
0

R
!

(k2 - Iv' + s4 + s8' + d4')_v I = 0 !_
0

R

(s 4 + s 8 + d4)_v' ] = 0
0

R

(k4 + Tw' + s9 - s5' -.d5')_w I = 0
0

R

(s5 + ds)_w' ] - 0 i0

I s

I (s7 - s2' + s3 + d3 - d2' + d6)_$ I = 0
0

il S •
(s 2 + d2)65' I = 0 (98)

0

;

The tension T is the same as that given in equation 95 above for the flap-

lag-pitch sequence. The generalized aerodynamic forces Au, Av, _, and A_

are obtained from equations 70 and 71 using equations 89 and 90 in

conjunction with equations 66 and 68 and retaining terms through second

degree in the dependent variables. Again, for simplicity, comparisons with

the literature will be made using UT, Up, and _.

COMPARISONS AND DISCUSSION

In this section the nonlinear aeroelastic equations of motion developed

above will be compared with some of the more recent literature dealing with

62
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flexible rotor blades. 'l_ese comparisons w_ll reveal several differences

with the present results. In order to mos_ clearly explain tnese di'ferences

attention will be directed to _ne or more of several of the fundamental

quantities which are needed in the development of the equations of motion

including: (i) the rotational transformation matrix relating the angular

orientation of the deformed and the undeformed blade; (2) the blade curvature

expressions; (3) the strain expressions; and (4) the tangential and perpen-

dicular components of the blade velocity.

Reference 1 derived the nonlinear aeroelastic equations for bending and

torsion of a rotating beam. Although no indication was given in this

reference as to the sequence in which the rotations were imposed while

developing the equations of motion and the resultant rotational transformation

matrix was not given, it can be shown that the transformation matrix which

i
i leads to the displacement field given in equations B-I and B-2 of reference 1

is given by

1 V' W'

[T]ref. 1 = - (v' ct,s$ + w' sin $) cos $ sin _ (99)

v' sin , - w' cos , -sin , cos *

To second degree, equation 99 can be written as

m

1 V' W °

" - v' - w', 1 _2 * (100)[T]ref. 1 - 2

i ,2
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Comparing the result given in equation I00 to either equations ii or 27 after

setting the pretwist to zero, it is clear that reference i has retained the

nonlinear terms involving _ but has discarded all second-degree terms which

involve squares and products of v' and w'. It is interesting to note that

•n this case [T] is the same for both of the rotational sequences considered
d

herein. Specializing equation 20 of reference 13 to the case of small strains,

the curvatures can be written in terms of the direction cosines relating the

deformed and undeformed blade coordinates as

_3 55 +m3m_+n3n_

%3 _1%+mlm_+nln_

n !

_z3 _2£i + m2m i + n2n I (i01)

Substituting the direction cosines from equation 100 into equation 101, the

curvatures become

= _t + v,,wf
x3

= - W" + V"_
Y3

= v" + w" _ (102)
*3

Using the orthogonality relations

£2£3 + m2m 3 + n2n 3 - 0
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_19.3+ mlm 3 + nln 3 _ 0

_1_2 + mlm 2 + nln 2 = 0 (103)

the curvature relations given by equations i01 can be written in the J

alternative form

_x3 - (Z2t_ + m2m_ + n2n3')

I

_Y3 - (t3_" + m3m'_ + n3n'_)

_Oz3 - (tl__ + mlm _ + nln2) (104)

i Equations 104 lead to the curvatures

x 3

= -W" + V"_
Y3

- v"+ w"_ (105)
z3

Now the curvatures obtained using the relations given in equations i01 and

104 should be identical. However, comparing the resulting expressions given

by equatlo3s 102 and I05, it is seen that the bending curvatures are in

agreement but the torsional curvatures differ tn the nonlinear terms. This

disagreement is a direct consequence of the use of a rotational transformation

ORIGINALPAGE IS 65
OF POOkQUALITY

1978007059-066



matrix (equation 100) which was partially linearized. In fact, as pointed out

in reference 13, the second-degree terms in the cuLvature expressions have no

meaning if all the second-degree terms are not retained in the transformation

matrix. The fact that the nonlinear terms in the bending curvatures are in

agreement is only fortuitous. It is easy to verify that the curvatures

_talned from equations 101 and 104 are identical if the comple_ second-degree

expression for [T], such as given by equations II or 27, is used. Employing

results based on the use of equation I00, reference 1 concluded that the

derivativesoftheelastlcaxi,,_rains(_._.d_'inthenotation

of reference i) were not small compared to the elastlc axis curvatures

(<qq, K_, and Kn_, in the notation of that reference). This conclusion is

at variance with that of reference ii. In Lhls connection, it should be noted

that if the complete second-degree expression for [T] is employed rather than

that given in equation I00, the derivatives in question are in fact zero

to second degree.

Reference 2 derived the transformation matrix relating the deformed and

undeformed blade coordinates for a lag-flap-pitch rotational sequence in

connection with efforts aimed at identifying the effects of certain second-

order terms associated with combined flapwlse and edgewise bending on the

expression for the angle of attack (and hence lift) of an elastic rotor blade.

While expressing the Euler rotation angles _, _, and @ in tern of the

dependent variables v, w, and $, reference 2 took exception to the third

Euler angle 0 by first arbitrarily defining the torsional rotation rate

_i (_x3 in the present notation) as being equal to $' in the absence

of pretwlst and then "solving" a differential equation for [T] to obtain 0.
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To second degree in the dependent variables thia procedure _ives

I/0 = _) - v"w'dr (106)

The nonlinear term appearing in equation 106 was designated "kinematic pitch

rotation" in reference 2. Since the transformation matrix iT] is a

. function of 0, the substitution of 0 as given by equation 106 into

equation 3 of reference 2 will lead to a second-degree expression for iT] in

which the kinematic pitch rotation term ap| o_, explicitly throughout the matrix.

Using this expression for iT], reference 2 obtained UT and Up and then

wrote the expression for the lift, from which the expression for the angle of

attack could be identified. The resulting expres_1_on for the ar,gie o._ attack,

given in equation 8 of reference 2, contains the kinematic pitch rotation

l term - .rrv"w'dr. In contrast, the present result for iT!, give in equationo

27, and UT and Up, given by equations 89a and 89b, do not contain tile
o

kinematic pitch rotation term. Reference 2 obtained this term because it

identified _i as being equal to _' and regarded '" as an unknown, rather

than identifying e as being equal to ¢ and taking '_i as an unknown. The

reason for proceeding in this manlier was not given in reference 2. As already

pointed out in references 13 and 14, tileidentification of '_i with _' is

at variance with the literature dealing with the elasticity of beams in which

O is set equal to d_ and c_i as well as the two bending curvatures are

regarded as the unknowns. If one proceeds in this latter manner, the solution of

equation 4 of reference 2 for coi yields

= ¢' + v"w' _)
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and the kinematic pitch rotation wlll not appear in either the expression nor

or in the expression for the angle of attack which Is in agreement with
the present results. Thus, che kinematic pitch rotation term does not exist

and its appearance in equations 3 a_d 8 of reference 2 is spurious.

The development of the nonlinear equations of motion for coupled bending

' and torsion of a twisted rotor blade in a vacuum was given In reference 4 and

forms the basis of the numerical results given earlier in reference 3 in

which aerodynamics uere included. The equations given in references 3 and 4

were derlved using the transformation matrix developed in reference 2 but

extended to include pretwlst. This extension, which is given in the Appendix

of reference 4, follows reference 2 in arbitrarily assuming that the torsional

curvature is known and given by

a_i = O' + ¢' (108)pt

and _._n solving for the third Euler angle 0 To second degree, this yields

-9 = _ + ¢ - v"w'dx (i09)
pt

which is equation A-6 in reference 4. Since iT] is a function of a, Lhe

substitution of equagion A-6 of reference 4 into equation A-3 will lead to a

second-_egree expression for [T] in which the kinematic pitch rotation term

appears. The present result for iT] given in equation 27 does not contain

this term. This term was obtained in reference 4 because that reference

arbitrarily identified _t as being equal to O' + _' and re_.,rd..' as• pt "

at, unknown rather than taking

68
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ffie' + _' (ii0)
pt

and, following customary practice in the elasticity literature, treating mi

as an unknown just like the bending curvatures. If the latter approach is

adopted, one rinds that the torsional curvature is given by

_i = 8' + _' + v'_' (iii)pt

and that the kinematic pitch rotation term does not appear in [T], in

agreement with the present results. Thus, the kinematic pitch rotation term

of reference 4 is also spurious. Using the trans'ormation matrix which

includes the kinematic pitch rotation terms, reference 4 derived the components

of the strain tensor in Eulerian coordinates, which is based on the use of

coordinates for the final or deformed state. The present expressions for the

strains given in equations 30 have been derived using a Lagrangian description

of the de_'_rmation, which is based on the use of coordinates of the initial

or undeformed state. This is the usual approach employed in solid mechanics.

Comparing the present strains given in equations 30 with those given in

equations 24 to 26 of reference 4, one can identify one difference in the

expression for the extensional strain and one difference in each of the

expressions for the shear strains. The difference in the extensional strain

involves the term !l(v'2 + w '2) which appears in equation 24 of reference 4

but does not appear in the present result given in equation 30a. The absence

of this term in equation 30a is due to the fact that the present development

explicitly includes the second degree terms associated with the foreshortening

of the e_.astic axis due to bending in the axial displacement field (see equation
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29) whereas refe£ence 4 does not. However, the fuceshortening effect may 5e

accounted for without explicitly including these terms in the axial displace-

ment field, although special considerations are required in this case

(reference 24). Reference 4 has apparently followed such as alternative

approach. The difference in the shears is reflected in the absence of the

term involving v'_' in the expressions for the shear strains given in

reference 4. The absence of the term v"w' in the shear strains of reference

4 is related to the use of the incorrect expression for the third Euler

angle given by equation 109, rather than the correct one given by equation

110, in the expression for [T]. It is interesting to note that if the

correct torsional curvature expression given by equation IIi were used in the

general expressions for the shear strains given in equations 20b and 20e of

reference 4, the term v"w' would appear in the final shear strains given in

equations 25 and 26 of that reference. The differences associated with the

term v"w' will lead to non-vanishing differences in the generalized elastic

forces appearing in the final equations of motion of the present study and

those appearing in reference 4. In particular, when compared to the present

results reference 4 lacks the terms (_' w' GD 2) in the chordwlse equation of
! !

motion, -(_' v" GD2) in the flapwise equation of motion, and (v" w' GD2)

in the torsion equation of motion. These terms are of the same order as ot._

terms arising from the strain energy which are retained in the final equatio_,u

of reference 4. If one invokes the basic assumption of reference 4 that terms

of 0(e 2) are negligible compared to unity and applies it to the inertial terms

of the present extensional equation g_ven by equation 97a_ the resulting

equation (with damping set to zero) is in agreement with that gi,ren by equation

61a of reference 4. Except for the additional terms mentioned abovej the
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present chordwise and flapwlse bending equations given in equations 97b and

97c (with dampirg set to zero) are in agreement with the corresponding

equations in reference 4. The present torsion equation given in 97d is in

agreement with that of reference 4 if the ordering _cheme of that reference is

applied to the present torsion equation. However, the ordering scheme

employed in reference 4 requires that exception be taken to the ordering scheme

as appl_ed to the torsional equation in order not to lose terms which, from

both physical and mathematical considerations, should be retained. The

present torsion equation contains many elastic and inertial terms which

reference 4 does not have because the ordering scheme adopted in the present

development is more general than that employed in reference 4.

Reference 5 extends the development of reference 4 to include variable

structural coupling and hover aerodynamics and presents an analytical trend

study of stability in hover. Some earlier numerical results based on these

equations for the case of zero structural coupling were given in reference 3.

Since reference 5 is based on the dynamic and elastic development given in

reference 4, all comments made in the discussion of reference 4 are also

applicable to reference 5 and will not be repeated here. Thus, the comments

to be made here will be directed only to the aerodynamic aspects of reference

5. Since the present expressions for the lift and moment as a function of

UT, Up, and _ given in equations 61 and 68 are in agreement with the

corresponding expressions given in reference 5, any differences between the

present results and those given in reference 5 can be identified most easily

Q

, by comparing the resultant expressions for UT, Up, and £Q Spectalizlng the

present results given in equations 89 and 90 to the case of hover with zero

cyclic pitch and no kinematic coupling and applying the same ordering scheme
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as in reference 5, the present expressions for UT, Up, and e are given

below along with those from reference 5 (in the present notation) for

comparison•

Present:

UT = _x +

Up = - flx(e+ _ + v'w') - v(e + 0) - X_R + w + _V(Bpc+ w')

--$ + n(Spc+ w') + _,'w' (112)

Reference 5:

fox " . (ape
Up = - _x(e + _ + v'w' - v"w'dx)- v(G + _) - _R + w + _v + w')

F

= ¢ + _(Bpc + w') (113)

Comparing these two sets of expressions one can observe two differences.

The first difference is related to the presence of the so-called kinematic

pitch rot_tlon term £Xv"w'dx in the expression for Up of reference 5. This

term does not appear in the present result for Up, As discussed earlier while

commenting on references 2 and 4, this term is spurious, The second difference

0

; involves the term v'w' which does not appear in the expression [or gi

F
given in reference 5. This difference is also a consequence of the arbitrary
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identification of _i with _' A curious aspect of tile ordering scheme of

reference 5 is its assumption of 8 = 0(i) in the structural portion of the

derivation but O = 0(g) in the aerodynamic portion. There appears to be no

rationale for this dual ordering scheme. In this connection, it is interest2ng
i

to note that if 8 is taken to be 0(I) in the entire development, several
pt

terms must be discarded in the resulting expression for Up of reference 5

according to the ordering scheme therein, including the spurious kinematic i

pitch rotation term.

In the comparisons made with the literature thus far, the point has been

made that references 2 to 5 have all obtained a spurious nonlinear term as a

consequence of an arbitrary identification of the torsional curvature with

either e' + ¢' or _'
pt , depending on whether pretwlst is present or not.

This appears to have a direct bearing on a recent criticism in the literature

I " (reference 25) of some work of Prandtl and Reissner (references 26 and 27)

dealing with the lateral buckling of slender cantilever beams. Using equation

5 of reference 2, reference 25 obtained the result given in equation 3.6

therein which can be written in the present notation as

= _ - v"w 'dx (114)o

where the subsc_ct denotes the pre-buckled condition. The lateral shear

force N I, which follows from a first integral of Kirchoff's lateral equilib-

rium equation, was then given as

where P is the tip load acting in the plane of maximum flexural rigidity.

79

ORIGn_JALPAGE IS
OF POOR QUAMTY ?

iJ ,

1978007059-074



This result, as pointed out in reference 25, does not agree either with the

expression given in reference 26 or with the different expression given in

reference 27. If Kirchoff's lateral equilibrium equation is solved for NI

using the torsional curvature associated with a flap-lag-pitch rotational

sequence and the resulting expression is perturbed about the equilibrium d

position specified in reference 25 one obtains

N1 --P(# - W'ov') (116)

which agrees with Prandtl's result as given in reference 25. If one solves

for NI using the torsional curvature associated with a lag-flap-pltch

sequence one obtains

NI = P ¢ (117) ,

which is Reissner's result as given in reference 25. This suggests that the

differences between the results of Prandtl and Reissner might be associated

with their use of torsional curvature expressions corresponding to two

different rotational transformation sequences.

Nonlinear aeroelastic equations of motion describing the coupled flap-lag-

torsion dynamics of a cantilevered rotor blade in hover were presented in

reference 8, which is based on an earlier development given in reference 6.

More recently, reference 8 has been extended in reference i0 to include

various unsteady aerodynamic theories in a hover stability analysis, Although

the majority of the immediate comments will be directed to references 6 and 8,

they are also applicable to reference I0. The expression for the extensional

strain given in equation i of reference 8 was obtained bv following the
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procedure given in reference 28 but retaining second order quantities

associated with elastic torsion. This expression is different from the one

given in equation 30a herein, but they can be shown to be equivalent by

eliminating u' from equation 30a in the manner indicated in reference 28.

This is done by making use of the equilibrium condition that the integral of

the longitudinal stress over the cross section must be equal to the total

tension T, solving the resulting expression for u', and then substituting

back into equation 30a. It is interesting to note that the analytical

development in reference 6, which is cited as the basis of the inertial and

aerodynamic expressions given in reference 8, is based on the use of a

rotational transformation matrix IT] in which all the nonlinear terms

involving v' and w' have been discarded. The matrix IT] will not be

orthogonal to second degree in the dependent variables and, in line with the

i .
reasoning given earlier in the discussion of reference I, the retention of the

nonlinear terms involving v" and w" in equation I of reference 8 is not
l

consistent with the ordering scheme employed for [T] in reference 6. The

expressions for the shear strains are not given in reference 8. However, from

the form of the generalized elastic forces given therein, it appears that

the shear strains used in reference 8 are

2 £xn = - _@'v l

!

I 2 ex_! = q@' (118)

,!

. the effects of warping being assumed zero. Comparing these expressions to those

' given herein by equations 30b and 30c after setting u, 0, and _ to zero, it
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can be seea that reference 8 does not have the nonlinear term involving v"w'.

It thus appears as though there is a difference in the level of approximation

ascribed to the extensional and shear strains. As already indicated earlier,

these terms lead to second-degree terms in the equations of motion which are
d

of the same order as the terms which are retained in reference 8. These

differences can be identified by comparing the elastic terms in equations 97b,

97c, and 97d of the present results to equations 2 to 4 of reference 8. The

expressions for UT and Up given in reference 8 were developed in reference

6 and written with respect to the blade local coordinate system resulting

after the lag and flap Iotatlons are imposed whereas the present results are

written with respect to the blade local coordinate system resulting after the

three rotations lag-flap-pltch are imposed. The two sets of expressions can

be compared, however, after setting O, _, and u to zero in the _resent

results• For this comparison, both the present results and those of reference

8 in the present notation are given below.

Present:

v ,2

UT = _vv' + v + r_(l - -_-) - _UF + _Rl_pcV' - _pcW

• w ,2
ffi - ' w' + Q_ v (119)

Up _vw' + w - _R%(I i) - rQv'w + _R%Spc pc

i Reference 8:
I

i

uz = _ + r_

Up = f_vw' + w - _R\ + _2_ v (120)pc
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If the ordering scheme of reference 8 is adopted, the underlined terms in

equation I19 can be discarded. The resulting expression for UT is then in

agreement with that of reference 8 but the resulting expression for Up is not

in agreement with that of reference 8. The present expression for Up contains

the additional term -r_v'w' which is of the same order as the nonlinear term
J

which is retained in reference 8. Reference 8 did not obtain this term

because the transformation matrix IT] which was used to obtain the velocity

expressions did not contain the nonlinear terms involving v' and w'. It

should be noted that the term -r_v'w' "opposes" the term _vw' in the

expression for Up. If this expression is specialized to the case of a rigid

articulated blade, these two terms will cancel (reference 14). Consequently,

the expression for Up given in reference 8 will not reduce to the correct

expression for Up for a rigid articulated blade having a lag-flap hinge .

i
sequence. The contribution of the blade pitching angular velocity to the

llft and moment are reflected in the _ terms in the present development. In

reference 8 this effect appears to be reflected solely in the terms eG +

which appear in the compollent lift expressions The terms _S + f_' + v'w'
pc

which appear in equation 90 of the present results, are not contained in

reference 8.

References 7 and 9 considered the case of co,_pled flap-lag stability in

forward flight. The comments will be directed to reference 9 but are equally

applicable to reference 7. The present results for UT and Up with 0, _, and

u set to zero are given below as well as those of reference 9 in the present

notation for comparison.
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Present : _'

• v ,2 v ,2 - :

UT = v + r_(l - T) + _R sin _ (I - T) + _R cos _ v'

+ _w' - _UF + t_RABpcV' - f_pcw

I

w ,2

Up= _ -nR_(1-_____)+ nw' + _R cos_ w'+ nR_6pcW'

w, 2

+ _RBpc cos @(i - i) - rRv'_w' - _R sin _ v'w' + _6pcV (121) _

Reference 9:

UT = v + r_ + U_R sin _ + _R cos _ v'

Up = w - _R_ + _qvw' + _QR ces "Lw' + u_RSpc cos '#+ _Spc v (122)

If the ordering scheme of reference 9 is adopted, the singly underlined terms in

equations 121 can be discarded• The resulting expression for UT is then in

agreement with that of reference 9 but the resulting expression for Up is not

in agreement with that of reference 9. The present expression for Up contains

two additional terms which are doubly underlined in equation 121. These terms

are of the same order as the nonlinear term which is retained in reference 9.

As stated earlier, the loss of these terms is due to the partial l[nearization

of the matrix IT]. It is also interesting to note that if u is taken to be

of 0(E), as in reference 6, rather than of 0(I), as in reference 9, the

ordering scheme of reference 9 wou[d _lecessitate discarding the term
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-_R sin _ v'w' and would imply that v' was negligible compared to unity.

However, the considerations of appendix B clearly show that one must not

assume the bending slopes (that is, w' and v') are negligible compared to

unity if one is deriving the nonllne=r _cndlng equations.

SOME ADDITIONAL COMMENTS ON THE NONLINEAR

EQUATIONS OF MOTION

The present equations for a lag-flap-pltch rotational transformation

sequence have been compared with several sets of corresponding equations

existing in the literature. Several discrepancies with the present results

were identified, particularly in the nonlinear terms. It was shown in the

i
literature that the aeroelastic stability of hingeless rotor blades is

o

sensitive to the nonlinear terms in the equations of motion. Hence, the next

step is to solve the present nonlinear equations for the laB-Llap-pltch

sequence including the new terms in order to assess the significance of the

discrepancies identified on aeroelastlc stability.

The present report has also examined the implications of the assumed

rotational transformation sequence between the coordinates of the deformed

and undeformed blade on the form of the final second-degree nonlinear equations

of motion. The need for considering the rotational transformation sequence

arises from the need to specify the position vector of an arbitrary point on

the blade i_._the deformed configuration. This po._ition vector is obtained by

performing a sequence of rotations and translations from inertial axes fix_

in space to axes fixed at the arbitrary point on the blade in the _l<'f._ /

t
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configuration. In this case, rotation of coordinste axes corresponds to

matrix multiplication and translation of coordinate axes corresponds to matrix

addition. The sequence in which the individual rotations due to flapwise

bending, chordwise bending, and torsion are imposed is cf importance here
|

because of the nonlinear nature of the governing equations of motion. As

mentioned earlier in the Introduction, the angles of rotation associated with

the deformations must be treated as finite and the transformation matrices

associated with the individual rotations are not ,:ommutatlve. In the case of

a rigid articulated blade, the physical arrangement of the hinges dictates the

order in which the component rotations must be _mposed while specifying the

position vector to an arbitrary point on the blade. However, if the blade is

flexible, the order in which the individual rotations are imposed is a

prerogative of the _nalyst. Out of the six possible rotational transformation

sequences, the lag-flap-pitch sequence seems to have been preferred by rotor

dynamlcists. However, no rationale is given for this preferential treatment.

In this connection, it should be mentioned that in other disciplines, the

possibility of alten_atlve rotational transformation sequences is admitted

(see, for example, references 21, 29, and 30).

The present report has considered two of the six possible rotational

transfor_mtlon sequences which may be imposed between the coordlnates of the

deformed and undeformed blade while developing nonlinear equations of a

rotor blade: flap-lag-pltch and lag-flap-pitch. The two sets of equations

resulting from the imposition of these two rotational transformatlou sequences

are different in the nonlinear terms. Some comments on the meanlng of the

existence of two different sets of equations describing one physical sy_:tem

are in order. From a mathematical point of v_ew, one nay Interpret these [wo
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sets of equations as representing two different nonlinear approximations of a

given physical system. A physical interpretation is also possible. If the

two sets of equations are specialized to the case of a rigid bl,de having only

rigid body flapping, lagging, and pitching degrees of freedom, the resulting

sets of equations will still be different. One set of equations will

• correspond to those of a centrally-hinged, fully-articu_ed rigid blade

having a hinge arrangement which is flap-lag-pitch and the other set of

equations will correspond to those of a centrally-hinged, fully-articulated

rigid blade having a hinge arrangement which is lag-flap-pitch. In t_

special case involving only the rigid body flapping and lagging freed_,

the resulting two sets of equations agree with those previously derived in

reference 14 fo= a rigid articulated rotor blade. This suggests that the two

( sets of eq,_ations obtained herein for the flexible blade reflect two possible

/,

virtual hinge sequences. In prelimin_ investigations, flexible hingeless

rotor blades are often analyzed using a rigid articulated blade mathematical

mode! through the concept of virtual _nges. In thi_ connection, it should be

remarked that the hinge sequence in the mathematical mrdel for the rigid

articulated blade used to analyze a hingeless fl-xible blade should be

compatible with the virtual hinge seqaence of the physical system.

Reference 14 showed that there are differences in staStlity for a rigid

articulated blade depending on the h_Be sequence. The question which then

naturally arises is whether or no= the_ are si_dlar differences in stabtllt7

for the flexible blade depending on tho IUNsumed order of the rotational trans-

i formation matrix. The _wo sets of equations derLved aeretn for the flexible

blade differ in the nonll_r terms in both the aerodynamic and etasri_ tpr_q,

in contrast to those forgive rigLd blade (reference 14) where there are
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differences only in the aerodyna.lc terms. In the case of a flexible blade,

the effect of the differenres in the elastic forces on stability may negate

the effect of the differences in the aerodynamic forces o;_ stabiliLy and thus

lead to a single stability boundary as expected from physical considerntinn_.

This remain3 to be established numerically.
I

The present equations have been developed in such a manner that reduced

degree-of-freedom cases of the general equations can be ottained by simply

deleting the equations and dependent variables corresponding to the degrees

of freedom which are to be supnressed. [n fact, degrees of fre6dom which are

not of interest can b_ suppressed in this manner at any stage in the pre._ent

development. This expediency is possible because the present devel:,pment

explicitly considers the axial foreshortening o; the elastic ax_s due to

bending. Special considerations are required if fore-'h,_rtening is not

considered explicitly (reference 24). The linear eqaatlons _,f _t[on are

obtained by simply d_scarding all nonlinear terms in the equation4 of [:'.t_r,,_t,

In particular, the linear coupled flap-lag-torsien equationq _f re[eren_t, 28

for the case in ,_'hichthe axis of r<-tation passes thrnug- the elastic ,tx[_

can be obtained as a special case of the present equa_i_ns of motion. [t

should be rerm_rked that even these linear equations require cous[durati,,n ,f

the geometric nonlinear t| 'ry of elasticity in _rd_,r to obtain th_ lfro,at

tenslon-torsion term (Tk ¢') In the torsion equation and tht, linear t_msion-

!

bending terms, (Tw')' and (Tv') , [n the flapwis_ and chord,_.,_e bending,

equations, respectively.
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CONCLUDING REMARKS

The second-degree nonlinear aeroelastic equations of motion for a flexible,

twisted, nonuniform helicopter rotor blade undergoin_ combined flapwise

bending, chordwise bending, torsion, and extension in forward flight have been A

dJrived using the extended Hamilton's principle. The equations have their

basis in the geometric nonlinear theory of elasticity and are consistent with

the small deformation level of approximation in which the elongations and

shears (and hence strains) are negligible compared to unity, but with no

restrictions on the rotations of the sections. A mathematical ordering scheme

which is consistent with the assumption of a slender beam was adopted for the

purpose of systemati_ally discarding elastic and dynamic terms which are of

higher order in the resultant equations of motion. The generalized aerodynamic

i
forces ar_ left in general second-degree form from which one can obtain the

aerodynamic loading to the order appropriate to any case of interest. The

influence of the assumed rotational trc_sfor ation sequence on the form of

the resultant equations of motion was examined for two of the six possible

transformation sequences: flap-lag-_itch and lag-flap-pitch. The present

results were compared to some of the more recent work on rotor dynamics which

is available in the literature. These comparisons indicate¢, several dis-

crepancies with the present results, particularly in the nonlinear terns.

The reasons for these discrepancies were explained. On the basis of the

comparisons and considerations made herein, the principal findings of the :_

present study may be summarized as follows:

(I) The minimum level of approxinmtion within the geometric 1_onlinear

1 theory of elasticity which is needed to obtain the second-degree norlinear

I
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equations of motion for a rotatinB blade is the case of small deformations ° ;

in which the elongations and shears (and hence the strains) are negligib _ .
t f

i compared to unity, with no restrictions on the rotations of the sections. In

!

i particular, the level of approximation usually employed for elastic stability
• !

i (buckling) problems in which the strains and the rotations are negligible
!,i

compared to unity with the stipulation that the strains are smaller than the

i

i rotations is inadequate for the case of the rotor blade.

ri
! (2) When deriving second-degree nonlinear equations of motion the angles "

of rotation associated wlth the displacements must be treated as finite and

one must retain all terms through second degree in the dependent variables

i in the resultant rotational transformation matrix between the coordinates of :

the deformed and undeformed blade, i

(3) Since the angles of rotation associated with the elastic deformations

must be treated as finite, the individual rotation matrices are not commu-

tative and the resulting differential equations of motion are different in

come nonlinear terms depending on the sequence in which the individual

rotations are imposed.

(4) Several discrepancies in some nonlinear equations of motion existing

in the literatu_ are identified and shown to be a consequence of a partial

_, linearizatlon of the resultant rotational transformation matrix between the

r coordinates of the deformed and the undeformed blade or the use of an incorrect ;,P

¢

expression for the torsional curvature, j

(5) The so-called "kinematic pitch rotation" term which ha_ been

ident'fled in the rotor dynamics literature is shown to be _;:_rious.

(6) As a by-product of thls study, some comments on a recent criticism

in the literature of the work of both Prandtl and Reissner pertaining to the
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lateral buckling of cantilever beams were made. It appears that Prandtl's

results are consistent with the use of the nonlinear torsional curvature

expression corresponding to a flap-lag-pitch rotational transformation sequence

while Reissner's results are consistent with the use of the nonlinear torsional

curvature expression corresponding to a lag-flap-pitch sequence.
. !

i
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I APPENDIX A

i A COMMENT ON THE SLENDER BEAM APPROXIMATION

i AND ATTENDANT ORDERING SCH_4E
_p

In the case of a long, slender beam, the assumptions t_,at the shear

;

deformation and rotary inertia are negligible (ref.i15) and that terms of

the type n2v ''2,_2w"2, and _w"v" may be discarded in the strain

i expressions (ref. 18),are often imposed in the development of the llnear

bending equations of motion for both rotating and nonrotating beams. These

assumptions are based on physical considerations related to the slenderness

of the beam in directions normal to its lengthwise axis. There appear to

be no comparable consider;=ions for the more general case of the nonlinear

coupled flap-lag-axlal-torslon equations of motion in a vacuum, such as

those used in stability analyses of flexib] _ helicopter rotor blades. With

a view toward providing such considerations, this Appendix will first

examine the implications of the slender beam approximation as applied to

the linear uncoupled equations of motion of a rotating beam in bending,

torsion, and extension and introduce a mathematical ordering scheme which

is compatible with the assumption of a slender beam. Using the insight

gained in these specialized considerations, this Appeudix will then examine

the implications of the slender beam approximation as applied to the second-

degree nonlinear coupled equations of motion of a rotating beam and introduce

an ordering scheme which is appropriate to this case. This latter ordering

scheme will form the basis of the development of the equations of motion in

the main text.

The assumptions attendant with the hypothesis of a slender beam can be!

systeumtlzed by introducing a parameter E which is taken to be of the same
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order as the nond_menslonalized bending displacements v/R and w/R. The

order of the dependent variables appearing ip the equations of motion of

this report, as well as the pertinent geomecrlc quantities, are summarized

in equation (AI) below:

u/R = 0(_2) q/R = 0(£)

v/R = O(e) {/R = 0(_)

w/R = 0(_) %/R2 = 0(E2) (AI)

= O(e) _n/R = 0(_)

xlR = 0(i) _/R = 0(e)

6pc = 0(_) Opt= 0(I)

It should be noted that u/R is O(E2) rather than O(£) lime v/R and w/R. This

was shown in reference 13.
i

Considerations for Uncoupled Equations

The linear uncoupled equations of motion of a rotating beam in bending,

torsion, and extension can be derived following the same procedure used to

derive the nonlinear equations of motion in the main body of this report

and, in the absence of shear deformation, pretwlst, and precone,* are

given by

*For simplicity, pretwist and precone are not included in the considera-

tions of this Appendix. However, their inclusion will not change these
considerations.
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Bending: ' ,

O(e31 0(_3) OCea) O(e) O(e)
!

(EIIW")''- (mk2ml_')' + (mk2mlw')'a2 +mw - (Tw') = 0 (A2)* '
q

Torsion (with warping):

0(e 3) 0(e 3) 0(e 3) 0(_ 3)

!

(GJ¢')' - mk2m_ - m_2 (kin22 - k2ml)*+ (Tk_*')

O(e 5) 0(e 4) O(e 5) 0(e 4) O(e 5) :
J

-(ECI*")"- 2me_2_' + (mk_ v - 2me_- mk_2*°)' = 0 (A3)n

Extension:
o

o(e2) o(1) o(e2) o(e2)
!

mu - m£22x - m_2u - (AEu') = 0 (A4)

where, from equation A4, the tension T is given by

AEu' = T = _ mxdx + terms which glve nonlinear terms in the (AS)

bending and torsion equations

The section properties associated with warping which appear in equatiov A3

are defined by

i me),-ffp_ dlqd{ mk_ =]JO_ 2 dr_d_ (A6)

Usual mathematical practice whec introducing an ordering scheme is to

first nondimenstonalize the governing equations and then establish the

order of nondimensional parameters appearing as coefficients of the

# #The equation given is for vertical bending. One could alternatively
t

use the edgewise bending equation.
#
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(nondimensional) dependent variables in the resulting equations. If this

rigorous procedure is followed, one must retain all terms arising in the

development of the equations of motion before nondimensionalizing and

discarding higher order terms. In the case involving the nonlinear coupled

flap-lag-axial-torsion equations of motion, this procedure leads to an

almost insurmountable amount of algebra. To circumvent this problem to some

extent, usual practice in the literature dealing with the dynamics of

flexible rotor blades is to introduce an ordering scheme while developing

the dimensional equations of motion. The present development will follow

this practice here as well as in the main body of this report. Consistent

with this expedient, the order of each term appearing in equations (A2) to

(A4) as established using the ordering scheme given in equation (AI) is

. shown above each term. _'

Consistent with the assumption of a slender beam, the rotary inertia

terms in the bending equation can be discarded as being negligible compared to

the translational inertia term in the equation. This means that, as far as

the generalized inertia forces in the bending equation are concerned, inertia

terms of 0(e 3) can be discarded compared to inertia terms of 0(E). The

elastic term (Elw")'_although of O(e3), cannot be discarded, however, since

both physical and mathematical consideratJons dictate the retention of this

term. Thus, in accordance wlth slender beam theory, one must retain terms up

to 0(E) in the inertia forces and up to O(E 3) in the elastic forces in

the linear bending equation. Extrapolating to the nonlinear case then, the

" second-degree nonllnear bending equation would be obtained by retaining terms

up to 0(E2), in the inertia forces and up to 0(c4) in the elastic forces.
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In the linear torsion equation the dominant inertial and elastic terms ,

! are of 0(g3). The dominant inertial terms are of the same order as the

? rotary inertia terms which were discarded in the bending equation under the

assumption of a slender beam. However, from both physical and mathematical

considerations, the third-order inertia te_ms appearing in the torsion

! equation cannot be discarded. This implies that the ordering scheme associated

_i with the usual slender beam approximation as applied to the bending equation

cannot be applied to the torsion equation. In other words, the slenderness

of the beam imposes no restrictions on torsion. In the absence of the

(underlined) warpit,g terms, the second-degree nonlinear torsion equation

would be obtained by retaining terms through 0(£4), that is, one order

higher than in ;he linear equation, Just as in the case of bending. The

ES)highest order linear terms associated with warping are 0( . Hence, if

i one wants all the second-degree nonlinear terms associated with warping in

the torsion equation one must retain terms through 0(E6).

: In the extensional equation the dominant inertial term is of 0(i).

However, in order to obtain a physically meaningful and mathematically complete

linear equation, the inertia terms of 0(g2) must be retained. It should be

noted that if the same ordering considerations which were applied to the

inertial terms in the bending equatio:_ are applied to the extensional equation,

the 0(E 2) inertia te_ms would be discarded. Thus, as for torsion, the

ordering scheme associated with the usual slender beam approximation as

applicd to the bending equation cannot be applied to the extensional equation.
J

f

Hence, as for torsion, the slenderness of the beam imposes no restrictions

i on the extensional equation. Recalling that u/R is 0(E2), the second-

degree nonlinear extensional equation would be obtaine,, by retaining terms
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up to 0(£4)-- in both the elastic and inertia forces.

The ordering scheme associated with the above considerations for both

the linear and nonlinear uncoupled euqatlons of motion are summarized in

table A1 below. The order appropriate to the case in which warping is not

considered in the torsion equation is indicated in parentheses. The ordering
|

scheme shown in table AI was obtained based on considerations for a rotating

beam. The same conclusions would have been reached if the beam had been

assumed to be nonrotatlng.

TABLE AI.- ORDERING SCRIBE FOR UNCOUPLED EQUATIONS
_.

Second-Degree
Lineaz Equations Nonlinear Equations

Elastic Inertia Elastic Inertia

forces forces forces forces
b

Bending equations E3 E c4 E2

Torsion equation Eb(E3) _5(3) E6(4) 6(E4 )

2 2 4 4
Extension equation C E E E

Considerations for Coupled Equations

The ordering scheme discussed above can be extended to the general non-

linear case in which the flapwlse and edgewise bending, torsion, and extension

are coupled. Since u/R is of 0(E2), the highest order term in the second-

degree nonlinear coupled torsion equation in the presence of warping would

be of 0(E7). Since the extensional freedom does not play a predominant role

in the coupled flap-lag-axlal-torslon stability of helicopter rotor bladeJ,

all tle nonlinear terms involving the extensional deformation u will be

discarded in the equations. Imposing this assumption, one then only has to

retain terms through 0(E5) in all the equations. Nvw all the nonlinear
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terms of 0(_6) in the resulting torsion equation are associated with warping.

It is believed that these nonlinear terms have a small effect on stability.

Hence, from an engineering point of view, these terms can be discarded in the

torsion equation. Furthermore, as far as the torsion equation is concerned,

it is believed that both the linear and nonlinear inertia terms of order

higher than e3 illthe torsion equation have a small effect on stability and

hence, only terms up to 0(E 3) in the torsional inertia forces will be

retained. This means that one need now only retain terms up to 0(c 5) in the

elastic forces and up to 0(e 3) in the inertia forces in all _he equations.

Rigid adherence to this ordering, however, leads to terms in the bending

equation which are of the same order as those discarded in the bending equa-

tion under the slender beam assumption. Hence, to be consistent, only terms

up to 0(e4) in the elastic forces and terms up to 0(_2) in the inertlal

forces are retainfd in the nonlinear coupled bending equations. Since the

extensional freedom does not play a major role in the oupled flap-lag axial-

torsion stability of helicopter rotor blades, only linear terms will be

retained in the extensional equation. Based on all these considerations and

Judgments, the order of the elastic and inertial terms which are retained Jn

the second-degree nonllnedr coupled flap-lag-axlal-torslon equations of

motion in the present development are given in table A2 below.

TABLE A2.- ORDERING SCHEME FOR SECOND-DEGREE NONLINEAR

COUPLED EQUATIONS.

Elastic f_rc_s Inertial forces

4 2
Bending e_uatlon_ c ¢

5 3
lorslcn e _'.o_l 6 £

3 3
Exr=,,slon equation t. c
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APPENDIX B

EQUATIONS OF MOTION FOR THE CASE OF SMALL DEFORMATIONS

AND SMALL ANGLES OF ROTATION

|

- The nonlinear aeroelastlc equations of motion of a rotatln,:',helicopter .
I

rotor blade are derived in the main body of this report consistent with the I
!

case of small deformations in which the elongations and shears (and hence

the strains) are negllgible compared to unity, with no restrictions on the

rotations of the sections. This partlcular level of approximation was

identified and discussed in reference ii and was further discussed in

reference 13, where it was called the case of "small deformations I."

Reference 13, following reference 11, also discussed a more restrictive

nonlinear level of approximation in which the elongations, shears, andb

( rotations are negligible compared to unity but the rotations are assumed ,

larger than the elongations and the shears. This second level of approximation,

which was called the case of "small deformations II" in reference 13, is the

one usually employed in elastic stability (buckling) problems of nonrotating

structures. It is therefore of interest to examine the form of the nonlinear _

equations of motion of a rotating blade which are obtained using this second

level of approximation and, by comparison with the equations obtained by the

first level of approximation in the uain body of this report, to ascertain

the validity cf the second level of approximation for the case of a rotating

rotor b_ade. This comparative investigation is motivated by the results of Y

, reference 13 which shows that the beam curvatures for the case of small '_

deformations II are linear. This suggests that the use of this level of

[

approximation is not applicable for the derlvation of nonlinear equations [i
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of motion.

For the case of small deformations II the rotational transformation

matrix relating the defor,,._d and the undeformed coordinates is obtained from

reference 13 by replacing @ by e and is given by the single relation
pt

m

i V I W'

-v' cos @ Cos @ sin @
P q

[TJsDII = -w' sin @ -_ sin @ +¢ cos 0
(B1)

V' sin @ -sin _ cos 0

-w' Cos 0 -¢ cos e -¢ sin 0

i Note that the resultant rotational transformation matrix given In equation BI

is linear and is thus independent of the order in which the individual

rotations are imposed. Hence, the curvatures which follow from equation BI

are linear and independent of the transformation sequence. In partlcular,

the torsional curvature is given by

•" 0' + ¢' (B2)

x3 pt

Using equations B1 and B2 in equation 9, the components of the position vector

P
,, for a gen_rlc point in the cross section of the blade after deformation ace

given by

xI = x + u -- UF - _(e'pt + ¢') - V'Yo - w'z °

: Yl "v+v -• o _Zo

1, +
zI w + z° _.v° ¢B3)
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where

; x -x-_.'
I o .t
i .

Yo _ q cos 8 - _ _in 8

z = _ q_n _ + r cos e (S4)o

Substituting equations B3 and B4 into equation 7 and performing the necessary

operations, the three strain components oz interest assume the form

= - u' - X_" - v" (r_ cos 8 - _ sin 8)Yxx exx
,2

,-w"(n sin e - _ cos 8) _ (.n2 + _;2,(_,_ 8pt + )

_x = 2exn = - _'

Yx_; = 2¢x_; = n0' (BS)

Using equations B3 and BS, the equations of motion corresponding to the

case of small deformations II and the orderlrtgscheme given in Appendix A

assume the form:

Ext ens ion:

- UF) - me(_' cos O + _' sin 8) - 2mfl[%--e(_ + @) s!n @ - e_8 cos e]

-_'i2(x + u - U F - ev ) ccs 8 - _' sin O)

+mq2_ (w + e sin 0 + e_ cos O)
pc

= {EA[u' + ¢' O' - ' (S6a)
pC - eAv" cos O - e_v" sin O] + E*fi ) } "u
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i

Chordwise bending:

mv - me(; + @) sin 0 - 2m_6 _ - m.q2_v + e cos _ - e_ :,in0)
pc

- {me[_2x cos O + 2fl{/cos 0]}' - (Tv')'

+ 2m_(6 - UF - e_' cos _ - e6' sin O)

+ {- EAeAU' cos @ - EB2@'0 ' cos O - BC2¢" sin O jpt

+ w" (EI_[,- Ell]q) sin @ cos @ + v" (Elqq s_n2@ + EI_ cos2 8)
* 2 "

+ E (l_cos @ + %_ sln2 @)_"} = Av (B6b)

_lapwlse bending:

+ me(¢ + @) cos @ + m_q28 x + 2mfg8
pc pc

! !

- {me[.q2x sin _ + 2_ sln @]} - (Tw')

+ .fEC2¢"cos 9 - £B2_'_0' sin 0 - EAeAU' sin 2pC

2
in2 "(+ w"(El cos 0 + E1 s 0) + v EI_. - EI ) _In - cos ,'

* [ _ 2 . )_,, "
+ E ( sin" ? + L cos a t -- Aq'_ ' w (B6c)

Tors ion :

'_ _ 2
mk2(_ + u) - r,;g2_(k" sin _ O + k e cos v)

,n m2 m1

me[w cos '? - (v - !_2v) sin ,,1

- 2m_q[e sin 0 (6 - 0 F) - (k 2 k 2 )_' sir, '-' cos
p _

m2 mI

_,(k2 sin2 r, + k_ 2- cos O) - e_ (¢' co_ sin ")l
m2 ml pc

+ {EC1_'' + EC2(w" cos _- - v" _i. _]) + E Cl_"}

-{ EAk2u'(O"tap+ _" + _.,_,2 * *''.pt ¢'+ G.t'' + E g .,2},,+ G,l';" ' " l pt
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• !

-EB2[w"(e'pt+ 0') sin e + v"(e',pt + ¢') cos e]}

= M0 - m_ 2(k2m2- k2, ml) sin 8 cos 8 - m_26pceX cos 8 (B6d)

The tension T appearing in equations B6 is given to second order by

T = - (u - UF) + e(_' cos e + w' sin 8) + 2_[Q - e(_ + 0) sin @]
x

+ _2(x + u - UF - ev' cos e - ew' sin 8)

- _26pc(W + e sin 8)] dx (B7)

The terms UF and UF in the expression for T given in equation B7 lead

to thlrd-degree nonlinear terms when T is substituted into equations B6

and can be discarded. Also, after substituting for T in these equations

only resulting terms which are consistent with the ordering scheme adopted

in Appendix A should be retained.

The generalized aerodynamic forces Au, Av, and A_ are obtained from

equations 70 and 71 using equations 66 and 68 where UT, Up, and _ are given by

UT = (v' cos e + w' sin 8) (B_R cos _ + _R%Bpc - 6 + _v)

+ (0 sin e - cos @)[_8pcW -Q- _(x + u - UF) - _R sin _]

- (sin 8 + 0 cos 8)(_R_ - _RSpc cos _ - _ - P6pcV) (B8a)

Up - (w' cos e - v' sin e)(_R cos _ + _R_Bpc - _ + ftv)

+ (sin 0 + 0 cos 0)[flBpcW - _ - fl(x+ u - UF) - _flRsin _]

+ (0 sin 0 - cos e)(_RX - _O_RBpc cos _ - _ - _BpcV) (B8b)

' _ = _(Bpc + w') + $ +ekc + _Ic_ sin _ - 81s_ cos _ (B8c)
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Since the resultant rotational transformation matrix between the deformed i

and undeformed blade coordinates (eq. BI) is linear and thus independent of

L
the order in which the component rotations are imposed, the resulting non-

t,

linear equatiolts of motion are also independent of the order in which the !
L
J

rotations are imposed and assume the unique form given in equations B6 to B8. t

Comparing these results to those given in the main body of this report for

either the flap-lag-pitch sequence or the lag-flap-pitch sequence one can

identify several terms, both linear and nonlinear, appearing in the more

complete e(,ations given in the main text which are absent in the equations

corresponding to the case of small deformations II derived in :his appendix.

k 2For example, the terms m_2_(k 2 cos" 8 + sin2 8) are missing in
m2 m1

the torsion equation B6d. It should be pointed out that these terms, in "_

2
combination with the terms -_Q2_(k2 sin2 8 + k2 cos 8) which do appear in

! m2 mI

the torsion equation, lead to the well-known linear centrifugal pitching

moment term m_2_(k_2m k2 ) cos 2 @. Also missing from the torsion eouation5

given by B6d are the nonlinear bending-torsion structural coupling terms

(EI_ - EIDD)[v;_w" cos 28 + (w''2- v"2)sin @ cos @]. These terms were first dis-

cussed in reference 31. The corresponding nonlinear bendlng-torslon coupling terms

" in the chordwlse and flapwise bending equations are given by [(EI_ - EIDq)"
11

i (%w" cos 28 - _v" sin 28)] and [(EI_ - Elnq;_v''""cos 28 + #w" sin 28)]"

respecti,:ely. These terms are missing from equations B6b and B6c. i

Based on these comparisons it can be concluded that the level of approx- "
£

imatton usually employed in elastic stability (buckling) problems wherein the

elongations, shears, and ro_ations are negligible compared to unity but the
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} rotations are assumed larger than the elongations and shears is not adequate

to develop the nonlinear equations of motion of a rotating helicopter rotor

" blade.

! r

t

i :

: I

ii "
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•XI

• Figure I.- Coordinate systems of tmdeformed blade., (Section pitch

ansle) O, not shown).
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Figure 2.- Coordinate systems of blade cross sectlon.
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Figure 5.- Cross section of blade in general unsteady motion.
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Figure 6.- Relative velocity components at blade cross section.
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